Is the electron round? Search for the electron's EDM E.A. Hinds

Centre for Cold Matter Imperial College London

Toronto University, 7 March 2013

How a point electron gets structure

point electron

polarisable vacuum with increasingly rich structure at shorter distances:

(anti)leptons, (anti)quarks, Higgs (standard model) beyond that: new particles?

Electric dipole moment (EDM)

electron

If the electron has an EDM, nature has chosen *one* of these, breaking T symmetry ... ep

The magnetic moment problem Suppose $d_e = 5 \times 10^{-28}$ e.cm (the region we explore) $= 1 \times 10^{-19} e.a_{0}$ In a field of 10 kV/cm $d_e \vec{\sigma} \cdot \vec{E} \simeq 1 \text{ nHz}$ When does μ_{B} . B equal this? B ~ 1 fG d_eσ This is very small electron 5

Our experiment uses a polar molecule - YbF

EDM interaction energy is a million times larger (mHz)
 needs "only" nG stray B field control

Modulate everything

9 switches:

512 possible correlations

- Generalisation of phase-sensitive detection
- Measure all 512 correlations.
- E·B correlation gives EDM signal

** Don't look at the mean edm **

- We don't know what result to expect.
- Still, to avoid inadvertent bias we hide the mean edm.
- An offset is added that only the computer knows.
- More important than you might think.
 e.g. Jeng, Am. J. Phys. 74 (7), 2006.

bootstrap method determines probability distribution

Measuring the other 511 correlations

(correlation	mean	σ	mean/c
fringe slope calibi	ation ^{DB} }	{-19.8038,	0.251037}	78.888
beam intensity	{SIG}	{150.576	, 1.9145}	78.6502
<pre></pre>	rf amplitude	{0.0781105,	0.00478208)	16.334
E drift	{RF1F, RF2F}	{0.0709938,	0.00481574)	14.742
E asymmetry	{E, RF2F}	{0.0282234,	0.00457979]	6.16259
Easymmetry	{E, RF1F}	{0.0239194,	0.00437301)	5.46978
inexact π pulse	{DB, RF1A}	{-0.0212292,	0.00407424	} 5.21058

• The rest are zero (as they should be)!

Only now remove blind from EDM

Current status

Previous result - Tl atoms
 Regan *et al.* (PRL 2002)
 Dzuba/Flambaum (PRL 2009)
 Nataraj *et al.* (PRL 2011)

 $d_e < 2.0 \times 10^{-27}$ e.cm with 90% confidence

Kara et al. NJP 14, 103051 (2012)

• 2011 result - YbF Hudson *et al.* (Nature 2011)

 $d_{e} = (-2.4 \pm 5.7 \pm 1.5) \times 10^{-28} \text{ e.cm}$ $\int \int \text{systematic - limited}$ $68\% \text{ statistical} \int \text{by statistical noise}$

 $d_e < 1 \times 10^{-27}$ e.cm with 90% confidence

How we will improve

Phase 1 Small upgrades: 3 x improvement - in progress

Phase 2 Cryogenic source of YbF - almost ready

Phase 3 Laser-cooled molecular fountain - being developed

Phase 2 - cryogenic buffer gas source of YbF

Cryogenic beam spectrum

 $10 \times \text{more molecules/pulse}$

4 × longer interaction time (slower beam) => 10 × better EDM signal:noise ratio

=> access to mid 10⁻²⁹ e.cm range

Tarbutt et al. arXiv:1302.2870

Some eEDM experiments in preparation

Acme collab. Harvard/Yale ThO : ${}^{3}\Delta_{1}$ metastable beam

Leanhardt group, Michigan $WC: {}^{3}\Delta_{1}$ ground state beam

Cornel Group JILA $HfF^{+}: {}^{3}\Delta_{1}$ ground state ion trap

Atom experiments in preparation

Cs in optical lattice: Weiss group, Penn State (next year?) Heinzen group, Texas (2 years?)

Fr in a MOT: Tohoku/Osaka (starting 2014)

Current status of EDMs

Summary

e- EDM is a direct probe of physics beyond SM

specifically probes CP violation (how come we're here?)

we see a way to reach <10-30

Atto-eV molecular spectroscopy tells us about TeV particle physics: the electron is too round for MSSM!

Thanks to my colleagues...

Jony Hudson

EDM measurement: Joe Smallman Jack Devlin Dhiren Kara Buffer gas cooling: Sarah Skoff Nick Bulleid Rich Hendricks

Mike Tarbutt

Ben Sauer

Laser cooling: Thom Wall Aki Matsushima Valentina Zhelyazkova Anne Cournol

Engineering and Physical Sciences Research Council

Science & Technology Facilities Council

