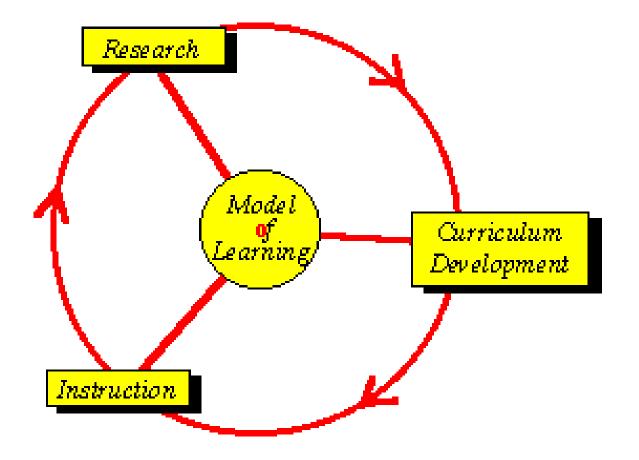
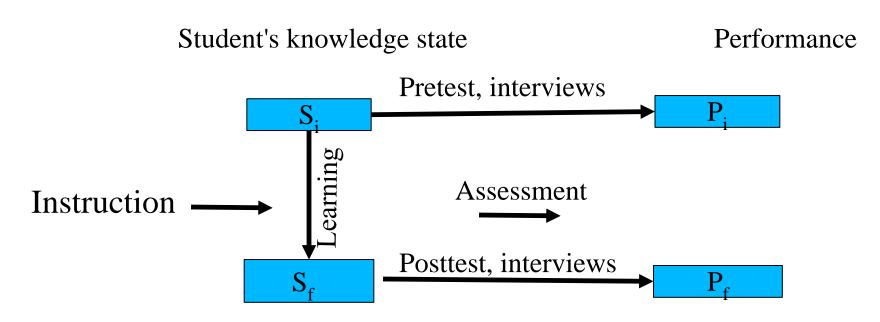
When Physical Intuition Fails


C. Singh University of Pittsburgh

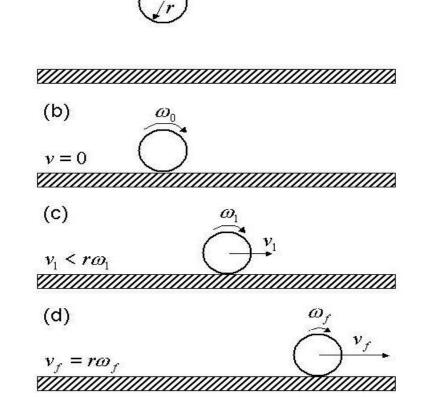

Physics Education Research

•Investigate sources of students' difficulties in learning physics

•Devise, implement and assess curricula/pedagogies to reduce difficulties

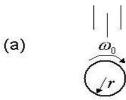
Model of Learning

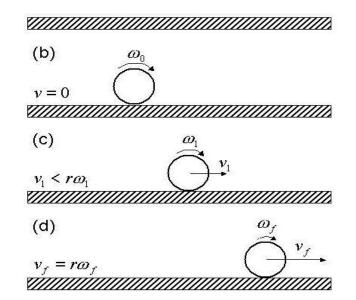
- Goal of instruction: Guide students from S_i -> S_f
- S_f depends on S_i and instructional design


When Physical Intuition Fails

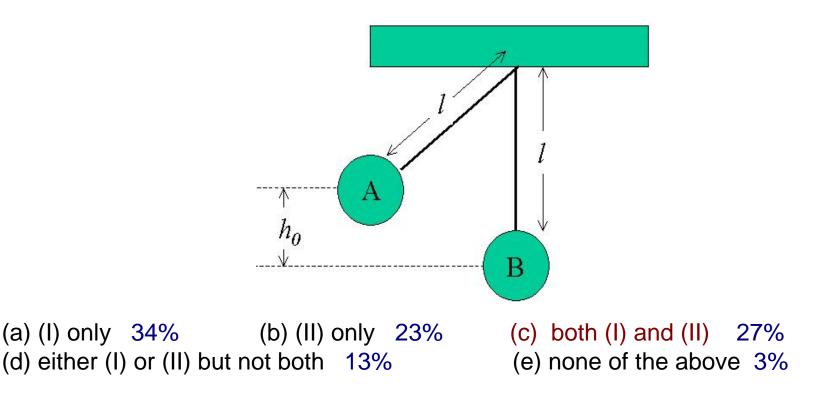
(Singh, Am. J. Phys., 70(11), 1103-1109, 2002)

20 faculty and students were posed


(a)


a non-intuitive introductory physics problem

Expertise and Intuition


- Non-intuitive problem has two critical variables
 - How much friction
 - How long to start rolling
- Faculty
 - Difficulty solving non-intuitive problem onthe-spot
 - Often focused only on one variable
 - No difficulty with Ballistic pendulum which also involves two principles
- Students
 - Both equally difficult

Energy & Momentum Question (Singh & Rosengrant, Am. J. Phys., 71(6), 607-617, 2003)

- Two small spheres of putty, A and B, of equal mass hang from a ceiling on massless strings of equal length. Sphere A is raised to a height h₀ as shown below and released. It collides with sphere B (which is initially at rest); they stick and swing together to a maximum height h_f. Choose all of the following principles that must be invoked to find height h_f in terms of h₀?
 - (I) conservation of mechanical energy
 - (II) conservation of linear momentum

Expertise and Intuition

- Perceived difficulty not only depends on inherent complexity of problem
 - Must assess difficulty of a problem from students' perspective
 - Experience, familiarity & intuition built
 - Crucial for optimal scaffolding

Improving Teaching and Learning of Quantum Mechanics

Chandralekha Singh (AJP 2001, Physics Today, 2006 with

Belloni+Christian, AJP and Phys. Rev. ST PER 2008,

2009, 2010, 2011, 2012, 2013)

OSP Simulations (M. Belloni & W. Christian)

Investigation of Difficulties Are misconceptions in advanced courses similar in nature to those for introductory courses?

- Can they be correlated with teaching style, place of study & textbook?
- Design and assess learning tools: Quantum Interactive Learning Tutorials (QuILTs) and peer-instruction tools
 - Based upon research on students' difficulties and learning theory
 - Keep students actively engaged
 - Bridge gap between formalism and conceptual understanding/math-physics connection
 - Build on prior knowledge and help students build a robust knowledge structure
 - Exploit computer simulations to help build intuition

Investigation of Difficulties

- Question about whether $H\psi = E\psi$ is always true for all possible wave functions
 - 29% correct response
 - 39% incorrectly agree with the statement
 - Others who disagree incorrectly asserted that
 - it is a statement about measurement of energy so the state should collapse into an eigenstate of energy
 - True if energy is conserved

Time-dependence of Wave function

- Time-dependence of wave function for
 - Infinite square well initially in linear superposition of two stationary states

$$\psi = \sqrt{\frac{2}{7}}\phi_1 + \sqrt{\frac{5}{7}}\phi_2$$

- 43% correct response
- 31% incorrectly used common time-dependent phase factor

Question about measurement of an observable

Consider the following conversation between Andy and Caroline about the measurement of an observable Q for a system in state $|\Psi\rangle$ which is not an eigenstate of \hat{Q} .

Andy: When an operator \hat{Q} corresponding to a physical observable Q acts on the state $|\Psi\rangle$, it corresponds to a measurement of that observable. Therefore,

 $\hat{Q}|\Psi\rangle = q_n|\Psi\rangle$ where q_n is the observed value.

Caroline: No. The measurement collapses the state so $\hat{Q}|\Psi\rangle = q_n|\Psi_n\rangle$ where Ψ_n on the right hand side of the equation is an eigenstate of \hat{Q} with eigenvalue q_n . With whom do you agree?

- A. Agree with Caroline only
- B. Agree with Andy only
- C. Agree with neither
- D. Agree with both
- E. The answer depends on the observable Q.

	Α	В	С	D	Е	blank
Q30	26%	13%	46%	13%	0%	1

Conclusions from surveys and interviews

- Advanced students also have many <u>common</u> difficulties and misconceptions
 - independent of background, teaching style & textbook
- Commonality of misconceptions originate from
 - inability to discriminate between related concepts
 - tendency to over-generalize
- Strikingly similar to "universal" nature of misconceptions in introductory physics

How to improve student understanding?

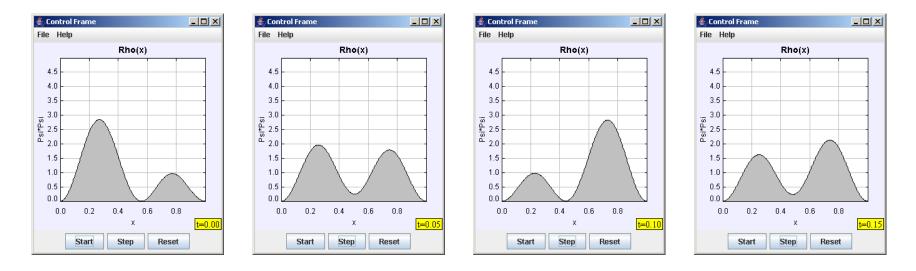
- Cognitive theory suggests
 - Learning is incremental and new knowledge builds on prior knowledge
 - Must know student's initial knowledge and build on it
 - Misconceptions and difficulties related to a particular topic can be classified into a few categories

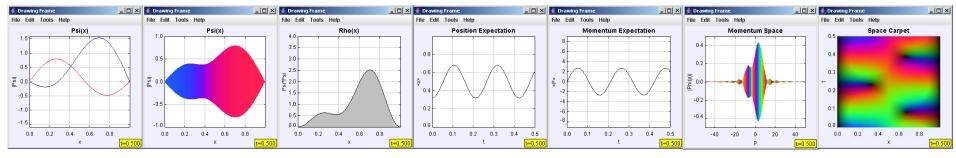
People's sense making shows patterns

- Students must construct their own understanding
 - Effective pedagogical strategies engage students in the learning process
- Mental load during problem solving is subjective
 - Not only depends on inherent complexity of the problem but on the familiarity and intuition
 - Put yourself in students' shoes
 - Provide systematic tasks consistent with current knowledge

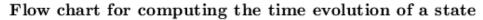
Quantum Interactive Learning Tutorials (QuILT)

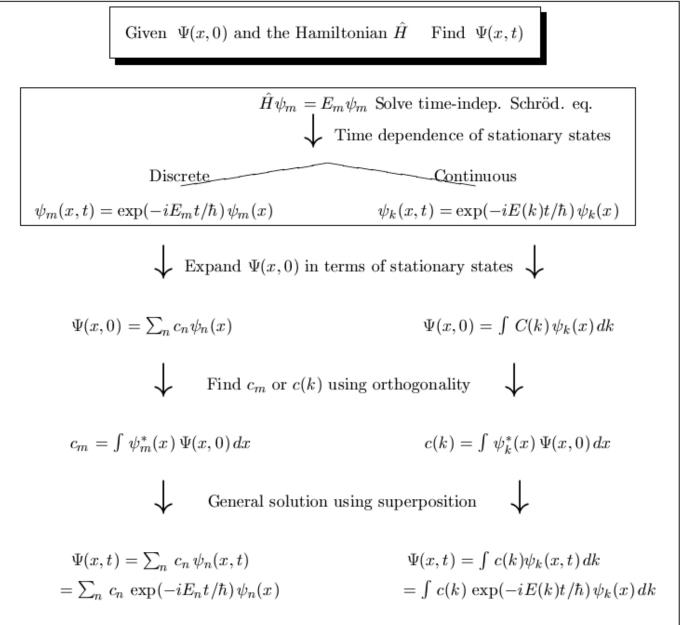
- Based on findings of student difficulties in learning QM
 - -Guided approach to learning that builds on students' prior knowledge


»Hints and feedback is given as needed


- bridge the gap between quantitative and conceptual aspects of QM
- -Keeps students actively engaged
- Each tutorial comes with pre-test/post-test, often warmup exercises and homework

-Cyclic method of development and evaluation


Time-Evolution QuILT

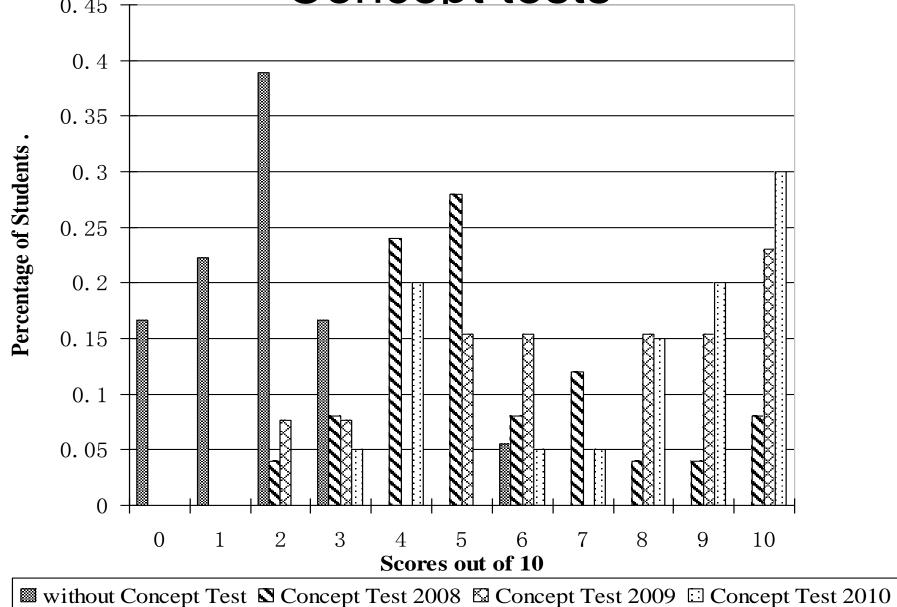

3. Now open the simulation (double-click the green arrow) and choose the initial wave function $\Psi(x,0) = \sqrt{\frac{1}{8}}\psi_1(x) + \sqrt{\frac{7}{8}}\psi_2(x)$. Watch the time evolution of $|\Psi(x,t)|^2$. Is the time evolution of this wave function consistent with what you predicted earlier? Explain.

*Equal-mix superposition in the ISW shown with a variety of visualizations.

Preliminary Evaluation

Tutorial	% Pretest Score	% Post-test Score
Time development of wave function	53	85
Uncertainty principle	42	83
Mach-Zender interferometer	48	83
Stern-Gerlach Experiment	55	86
Drawing Wavefunction	40	90
Measurement	67	90
Addition Angular Momentum	35	74

- Peer Instruction Tools
 We are developing peer-instruction tools for teaching quantum mechanics
 - Conceptests (~500 for full year)
 - JITT including reflective questions (can also be used as class discussion/homework questions)
- Conceptests can be integrated with lecture


Students discuss answers with each other before answering

- Review questions at the beginning or end of lecture

Peer Instruction for Quantum Mechanics

- Peer Instruction tools have been designed based upon research on student difficulties and cognitive issues in learning quantum mechanics
- Often several conceptests are related
 - Sometimes deal with common difficulties
 - help students develop a coherent knowledge structure related to a particular QM concept
 - Math/physics connection
 - Some are abstract while others deal with concrete applications and manifestations
 - Different representations of knowledge are used

Infinite Square Well: with and without O. 45 T

Quantum Measurement Conceptests/QuILT

- Student Performance
 - Traditional instruction: 26%
 - ConcepTest Only: 68%
 - ConcepTest & QuILT: 90%
- Student performance significantly better after Conceptests
 - Even better after both tools

Quantum Mechanics Survey -31 item research-based conceptual multiplechoice survey

Connection between math/physics (quantitative and conceptual aspects) & knowledge structure
only focuses on QM in one spatial dimension
validity and reliability studies conducted

Scores for Different Groups on QMS: 10 Universities, 14 Classes

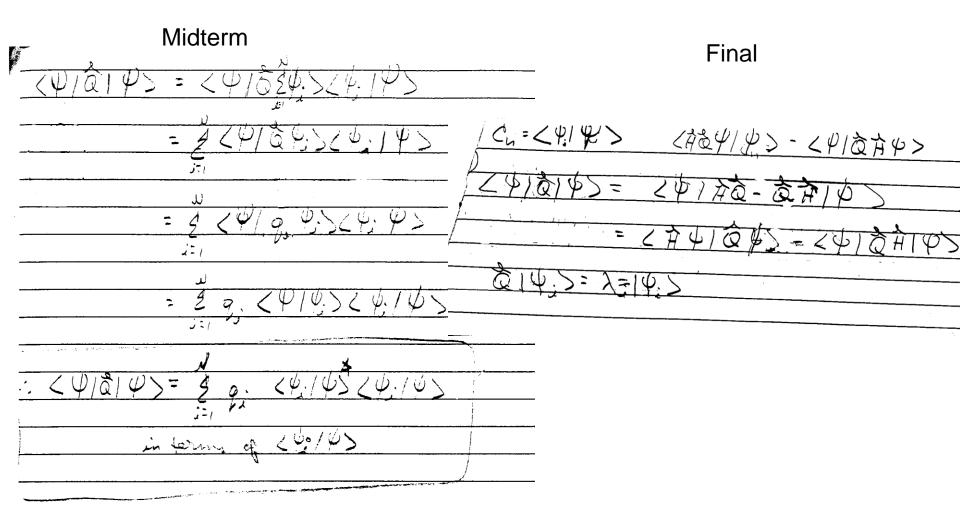
- Developed and validated Quantum Mechanics Survey (AJP, 2012)
 - Without research-based learning tools
 - 165 undergraduates: 39%
 - 33 first year graduate students at the end of a full year quantum mechanics: 52%
 - With research-based learning tools (QuILTs and peer instruction tools)
 - 28 undergraduates at the end of the first semester QM: 72%
 - 26 undergraduates at the end of the second semester QM: 69%

Reflection on their mistakes by Undergraduates in QM

- Metacognition/reflection is a sign of expertise
 - Experts automatically reflect upon problem solving process, learn from their mistakes and organize, repair and extend their knowledge
- QM undergraduates
 - Do they voluntarily reflect upon & learn from what they did incorrectly the first time?
 - Do they check their work with instructor's solution provided automatically?
 - Do they perform better if asked the same question a second time?

QM Experiment: Setup

- 14 students, upper-level Quantum Mechanics
- 4 problems given on 2 midterms
- Relevant material covered in lecture, homework and text via "standard" teaching approach
 - 3 problems selected by difficulty: students struggled with these on the midterms (roughly 50% combined average)
 - 1 selected because it was easy
- These four problems were repeated as part of the final exam
 - Hypothesis: Students who successfully learn from errors on their midterm will improve on the final
 - Graded on rubric


Results

Physics scores									
Problem	Problem		2	3	4		All	1,2	,3
Midterm mean 6		9	60	43	93		66 5		7
Final exam mean		8	54	46	80	60		53	3
All problems (physics only):	All problems (physics only):		od to od**	Good to bad	Bad to good		Bad to bad		
# of instances*	# of instances*			6	5		16		
% of instances	% of instances*		%	14%	12%		38%		

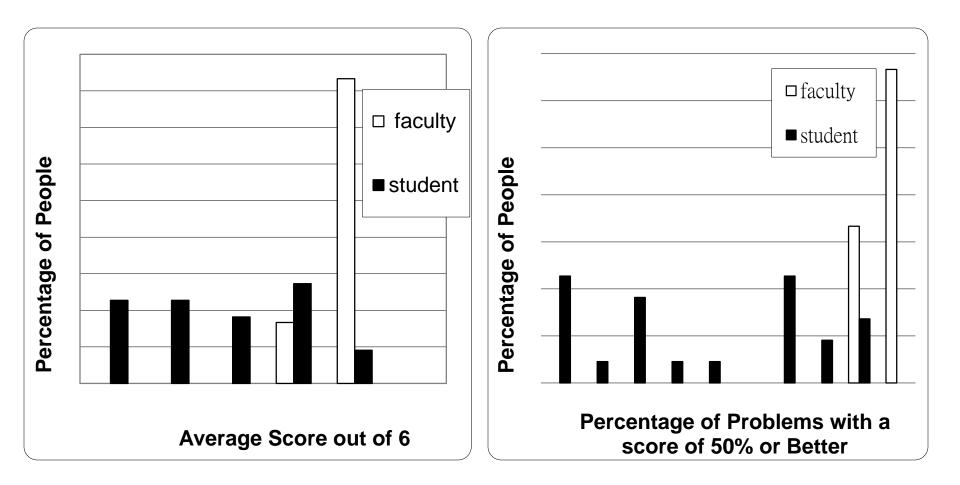
- No improvement!

* "Instance" = 1 attempt on 1 problem (problem 4 not included - too easy)
** "Good" = at least 60% score, "Bad" < 60%

Performance on the same question on midterm and final exams :Student X

Interview Results

- 6 student interviewed when in QM II (asked to solve same problems and about their problem solving approaches and attitudes):
 - Significantly worse performance in interview 2 months later
 - Discussions about final exam during Interviews suggest that some students did selective studying/memorizing during midterm but could not do so during final when there was too much material
 - Some students explicitly said they do not like to look at the instructor solutions to midterm exams
 - because they don't expect those questions repeated in final exam
 - because it pains them to realize that they have done poorly


Lessons Learned from Written Responses

- Many students in QM do not necessarily learn from their mistakes
- They do not automatically use their mistakes as an opportunity for repairing, extending and organizing their knowledge
- They are not automatically doing selfmonitoring
 - Some perform poorly both times
 - Some do well on midterm but regress on final

Categorization of QM Problems (With Shih-Yin Lin, EJP, 2010)

- Categorization task (grouping together problem based upon similarity of solution) can be used to
 - Measure of expertise (Chi et. al. 1981)
 - Since experts have well-organized knowledge hierarchy
 - may categorize problems differently than students
- How is Categorization of introductory problems
 different from categorization of QM problems

Performance – Faculty vs. Student

Wide distribution of student performance in QM very similar to the distribution of intro. Students' categorization in intro physics (Mason and Singh, PRST PER)

Summary

- Research shows that advanced undergraduate and graduate students in quantum mechanics courses have
 - Common difficulties which are universal in nature similar to those documented for introductory students
 - Independent of school, teaching style and textbook
 - Distribution of students' expertise
 - Do not automatically take the time to learn from their mistakes and do not take the opportunity to organize and extend their knowledge
 - Need explicit guidance in developing self-monitoring skills
 - Develop & assess research-based QuILTs and peer instruction tools

Summary of Learning Tools

- Quantum Interactive Learning Tutorials (QuILTs) and Peer Instruction Tools
 - Based upon research on student difficulties/iterative development
 and evaluation based upon faculty/student feedback
 - Bridge the gap between conceptual and quantitative aspects
 - Exploit computer simulations to enhance learning
 - Students can work on them in class and QuILTs also as part of homework (self-paced)
 - Research-based QuILTs & Peer Instruction tools help students acquire <u>usable</u> knowledge by
 - Accounting for cognitive issues in learning physics
 - Keeping students actively involved in learning process
 - explicitly emphasizing and rewarding development of reasoning skills