Do Cuprate High-Temperature Superconductors harbor Extra Dimensions?

Thanks to: NSF, EFRC (DOE)

Gabriele La Nave

Kridsangaphong Limtragool

IS HINCHLIFFE'S RULE TRUE? ·

Boris Peon

<u>Abstract</u>

Hinchliffe has asserted that whenever the title of a paper is a question with a yes/no answer, the answer is always no. This paper demonstrates that Hinchliffe's assertion is false, but only if it is true.

What would be a Signature of Extra Dimensions?

And it came to pass that... $\oint \mathbf{E} \cdot d\mathbf{A} = q/\epsilon_{o}$ $\oint \mathbf{B} \cdot d\mathbf{A} = 0$ $\oint \mathbf{E} \cdot d\mathbf{s} = -\frac{d\Phi_{B}}{dt}$ $\oint \mathbf{B} \cdot d\mathbf{s} = \mu_0 \boldsymbol{\epsilon}_0 \frac{d\Phi_{\mathbf{E}}}{dt} + \mu_0 i$ and there was Light!

what God really said:

let there be F

A Maxwell equation

$$dF = J$$

redundancy

gauge invariance= current conservation

$$S = \int d^{d}x \left(F^{2} + J_{\mu}A^{\mu} + \cdots\right)$$

$$A \to A + \partial \Lambda$$

$$S \to S + \int d^{d}x \swarrow \partial_{\mu} \partial \Lambda$$
integrate by parts
$$\partial_{\mu}J^{\mu} = 0$$
Current conservation

$$[d^d x J A] = 0$$

fixes dimension of current

$$[J] = d - 1$$

conserved quantities have fixed dimensions

renormalization does nothing

 $[A_{\mu}] \neq 1$

but the current is conserved

extra dimensions

where might this be seen?

physics at strong coupling (interactions)

Y Ba₂Cu₃O₇ Cuprate Superconductors

not independent particles (collective phenomena)

Y Ba Cu 3O 7 Cuprate Superconductors strong coupling metallic state (strange metal)

superconductivity

what is the strange metal?

$$\sigma(\omega) = \frac{\sigma_0}{1 - i\omega\tau} \longrightarrow \lim_{\tau \to 0} \Re \sigma \to \infty$$

standard metals

 $ho \propto T^2$

Weidemann-Franz law

$$\frac{\kappa_{xx}}{T\sigma_{xx}} = \frac{\pi^2}{3}$$

optical conductivity

$$\Re \sigma \propto 1/\omega^2$$

strange metal: experimental facts

Quantum critical penaviour in a high- T_c superconductor

D. van der Marel¹*, H. J. A. Molegraaf¹*, J. Zaanen², Z. Nussinov²*, F. Carbone¹*, A. Damascelli³*, H. Eisaki³*, M. Greven³, P. H. Kes² & M. Li²

¹Materials Science Centre, University of Groningen, 9747 AG Groningen, The Netherlands

²Leiden Institute of Physics, Leiden University, 2300 RA Leiden, The Netherlands ³Department of Applied Physics and Stanford Synchrotron Radiation Laboratory, Stanford University, California 94305, USA

$$\sigma(\omega) = C\omega^{-\frac{2}{3}}$$
$$\frac{n\tau e^2}{m} \frac{1}{1 - i\omega\tau}$$

T-linear resistivity

 $\frac{\text{Theories of cuprates}}{\text{Theories of strange metal}} = \infty$

why is the problem hard?

new length scale?

Recall in standard E&M

 $[A_{\mu}] = 1$

 $[J_{\mu}] = d - 1$

strange metal

$$[J_{\mu}] = d - \theta + \Phi + z - 1$$
$$[A_{\mu}] = 1 - \Phi$$
$$\Phi = -2/3$$

How is this possible?

standard E&M has an added ambiguity

$$\partial_{\mu}J^{\mu} = 0$$
$$[\partial_{\mu}, \hat{Y}] = 0$$
$$Does a non-trivial solution exist?$$

?

gauge-gravity duality (Maldacena, 1997)

 $\frac{\text{coupling constant}}{g = 1/\text{ego}}$

certain strongly coupled theories have gravity duals (holography)

if holography is RG then how can it lead to an anomalous dimension?

closer look

$$\nabla \cdot (y^a \nabla u) = 0$$

$$d(y^a \star dA) = 0$$
 holography

similar equations

generalize CS theorem to p-forms GL,PP:1708.00863 boundary action: fractional Maxwell equations

 $\Delta^{\gamma}A_{\perp}=0$

boundary action has anomalous dimension (non-locality)

 $F_{ij} = \partial_i^{\gamma} A_j - \partial_j^{\gamma} A_i \equiv d_{\gamma} A = d\Delta^{\frac{\gamma-1}{2}} A,$

new gauge transformation

$$A \to A + d_{\gamma} \Lambda$$
,

$$d_{\gamma} \equiv (\Delta)^{\frac{\gamma - 1}{2}} d$$

$$[A] = \gamma$$

$$\partial_{\mu} J^{\mu} = 0$$
 current conservation
what if
 $[\partial_{\mu}, \hat{Y}] = 0$

 $J \to \Delta^{\alpha} J$ $[J] = d - 1 - \alpha$

is there a knock-down experiment?

Aharonov-Bohm Effect

physical consequences of anomalous dimension for \mathcal{A}_{μ}

Aharonov-Bohm Effect must change

 $\Delta \phi_D = \frac{e}{\hbar} \pi r^2 BF(R,\alpha)$

Planckian dissipation

$$\tau = \frac{\hbar}{k_B T}$$

 $\tau \approx 10^{-14} s$

	Table 11.1	
Element	77 K	273 K
Li	$7.3 imes 10^{-14} s$	$8.8 imes 10^{-15} s$
Na	$1.7 imes 10^{-13} s$	$3.2 imes 10^{-14} s$
K	$1.8 imes 10^{-13} s$	$4.1\times 10^{-14}s$
Rb	$1.4 \times 10^{-13} s$	$2.8\times10^{-14}s$
\mathbf{Cs}	$8.6 imes10^{-14}s$	$2.1 imes 10^{-14} s$

probe by Aharonov-Bohm effect on underdoped cuprates: extra dimensions