Do Cuprate High-Temperature Superconductors harbor Extra Dimensions?

Thanks to: NSF, EFRC (DOE)

Gabriele La Nave

IS HINCHLIFFE'S RULE TRUE? •

Boris Peon

Abstract

Hinchliffe has asserted that whenever the title of a paper is a question with a yes/no answer, the answer is always no. This paper demonstrates that Hinchliffe's assertion is false, but only if it is true.

What would be a Signature of Extra Dimensions?

And it came to pass that... $\oint E \cdot d \mathrm{~A}=q / \mathrm{E}_{\mathrm{o}}$
$\oint B \cdot d \mathrm{~A}=0$
$\oint E \cdot d s=-\frac{d \Phi_{t}}{d t}$
$\oint \mathrm{B} \cdot d \mathrm{~s}=\mu_{0} \mathrm{E}_{o} \frac{d \Phi_{s}}{d t}+\mu_{0} i$ and there was Light!

what God really said:

let there be F

A Maxwell equation

$$
d F=J
$$

redundancy

gauge invariance $A \rightarrow A+\partial \Lambda$
 \square
 $$
\left[A_{\mu}\right]=\frac{1}{L}=1
$$

$$
F \rightarrow F
$$

gauge invariance= current conservation

$$
\begin{aligned}
& S=\int d^{d} x\left(F^{2}+J_{\mu} A^{\mu}+\cdots\right) \\
& A \rightarrow A+\partial \Lambda \\
& S \rightarrow S+\int_{\text {integrate by parts }}^{A^{d} x \not a} 2 \Lambda
\end{aligned}
$$

$$
\partial_{\mu} J^{\mu}=0 \quad \text { current conservation }
$$

gauge invariance

$$
\left[A_{\mu}\right]=1
$$

current conservation

$$
\left[d^{d} x J A\right]=0
$$

fixes dimension of current

$$
[J]=d-1
$$

renormalization does nothing

$$
\left[A_{\mu}\right] \neq 1
$$

but the current is conserved

physics at strong coupling (interactions)

$\mathrm{YBa}_{2} \mathrm{Cu}_{3} \mathrm{O}_{7}$
Cuprate Superconductors
not independent particles (collective phenomena)

$\mathrm{YBa}_{2} \mathrm{Cu}_{3} \mathrm{O}_{7}$
Cuprate Superconductors

strong coupling metallic state (strange metal)

superconductivity

what is the strange metal?

Drude metal

$$
\sigma(\omega)=\frac{\sigma_{0}}{1-i \omega \tau} \longmapsto \lim _{\tau \rightarrow 0} \Re \sigma \rightarrow \infty
$$

standard metals

resistivity

$$
\rho \propto T^{2}
$$

Weidemann-Franz law

$$
\frac{\kappa_{x x}}{T \sigma_{\mathrm{xx}}}=\frac{\pi^{2}}{3}
$$

optical conductivity
$\Re \sigma \propto 1 / \omega^{2}$

strange metal: experimental facts
 \section*{Quantum criticarwonawion in}

 a high- T_{c} superconductorD. van der Marel ${ }^{1 *}$, H. J. A. Molegraaf ${ }^{1 *}$, J. Zaanen ${ }^{2}$, Z. Nussinov ${ }^{2 *}$ F. Carbone ${ }^{1_{*}}$, A. Damascellil ${ }^{3 *}$, H. Elsakil ${ }^{3 *}$, M. Greven ${ }^{3}$, P. H. Kes ${ }^{2}$ \& M. LI 2

Materials Science Centre, University of Groningen, 9747 AG Groningen, The Netherlands
${ }^{2}$ Leiden Institute of Physics, Leiden University, 2300 RA Leiden, The Netherlands 'Department of Applied Physics and Stanford Synchrotron Radiation Laboratory, Stanford University, California 94305, USA

Wavenumber $\left(\mathrm{cm}^{-1}\right)$

$$
\begin{gathered}
\sigma(\omega)=C \omega^{-\frac{2}{3}} \\
\frac{n \tau e^{2}}{m} \frac{1}{1-i \omega \tau}
\end{gathered}
$$

T-linear resistivity

$L_{x y}=\kappa_{x y} / T \sigma_{x y} \neq \# \propto T$

Theories of cuprates
 $\overline{\text { Theories of strange metal }}=\infty$

single-parameter scaling

strange metal: experimental facts

Hall Angle

$$
\cot \theta_{H} \equiv \frac{\sigma_{x x}}{\sigma_{x y}} \approx T^{2}
$$

Hall Lorenz ratio

$L_{x y}=\kappa_{x y} / T \sigma_{x y} \neq \# \propto T$

T-linear resistivity

all explained if

$$
\left[J_{\mu}\right]=d-\theta+\Phi+z-1
$$

Hartnoll/Karch

$$
\left[A_{\mu}\right]=1-\Phi
$$

$$
\Phi=-2 / 3
$$

$$
\begin{aligned}
& {\left[A_{\mu}\right]=1} \\
& {\left[J_{\mu}\right]=d-1}
\end{aligned}
$$

strange metal

$$
\begin{array}{r}
{\left[J_{\mu}\right]=d-\theta+\Phi+z-1} \\
{\left[A_{\mu}\right]=1-\Phi} \\
\Phi=-2 / 3
\end{array}
$$

How is this possible?

what is the new gauge principle?

$$
\left[A_{\mu}\right] \neq 1
$$

hint

what if

$$
\left[\partial_{\mu}, \hat{Y}\right]=0
$$

new current

$$
\partial_{\mu} \hat{Y} J^{\mu}=\partial_{\mu} \widetilde{J}^{\mu}=0
$$

standard E\&M has an added ambiguity

$$
\partial_{\mu} J^{\mu}=0
$$

$\left[\partial_{\mu}, \hat{Y}\right]=0$
Does a non-trivial solution exist?

STRING THEORY

DAVID FOSTER WALLACE

ON TENNIS

INTRODUCTIONBY
JOHN JEREMIAHSULLIVAN
gauge-gravity duality (Maldacena, 1997)

locality in energy

certain strongly coupled theories have gravity duals (holography)

claim

if holography is RG then how can it lead to an anomalous dimension?

$$
S=\int d V_{d} d y\left(y^{a} F^{2}+\cdots\right)
$$

what about the boundary?

Caffarelli-Silvestre extension theorem (2006)

fractional Laplacian

$$
\begin{gathered}
g(z=0, x)=f(x) \\
\gamma=\frac{1-a}{2}
\end{gathered}
$$

fractional Laplacians

closer look

$$
\nabla \cdot\left(y^{a} \nabla u\right)=0 \begin{gathered}
\text { scalar field } \\
\text { (use CS theorem) }
\end{gathered}
$$

$$
d\left(y^{a} \star d A\right)=0 \quad \text { holography }
$$

similar equations

> generalize CS
> theorem to p-forms
> GL,PP:1708.00863
boundary action: fractional Maxwell equations

$$
\Delta^{\gamma} A_{\perp}=0
$$

boundary action has anomalous dimension (non-locality)

$$
F_{i j}=\partial_{i}^{\gamma} A_{j}-\partial_{j}^{\gamma} A_{i} \equiv d_{\gamma} A=d \Delta^{\frac{\gamma-1}{2}} A,
$$

new gauge transformation

$$
A \rightarrow A+d_{\gamma} \Lambda
$$

$$
\begin{gathered}
d_{\gamma} \equiv(\Delta)^{\frac{\gamma-1}{2}} d \\
{[A]=\gamma}
\end{gathered}
$$

is there a knock-down experiment?

Aharonov-Bohm Effect

$$
\oint A \cdot d \ell
$$

physical consequences of anomalous dimension for \mathcal{A}_{μ}

$$
\begin{gathered}
\mathcal{A}_{\mu} \rightarrow \mathcal{A}_{\mu}+\partial_{\mu}^{\Theta} \mathcal{G} \\
\vec{\nabla}^{\alpha} \times \vec{A}=\vec{B} \\
{ }^{\text {no Stokes' }} \text { theorem } \\
\oint \vec{A} \cdot d \ell \neq \int_{S} B \cdot d \vec{S}
\end{gathered}
$$

Aharonov-Bohm Effect must change

is the correction large?

$$
\begin{gathered}
\alpha=1+2 / 3=5 / 3 \\
\Delta \Phi_{R}=\frac{e B \ell^{2}}{\hbar} L^{-5 / 3} /(0.43)^{2} \\
\text { yes! }
\end{gathered}
$$

Planckian dissipation

$$
\begin{aligned}
\tau & =\frac{\hbar}{k_{B} T} \\
\tau & \approx 10^{-14} s
\end{aligned}
$$

Table 11.1

Element	77 K	273 K
Li	$7.3 \times 10^{-14} s$	$8.8 \times 10^{-15} s$
Na	$1.7 \times 10^{-13} s$	$3.2 \times 10^{-14} s$
K	$1.8 \times 10^{-13} s$	$4.1 \times 10^{-14} s$
Rb	$1.4 \times 10^{-13} s$	$2.8 \times 10^{-14} s$
Cs	$8.6 \times 10^{-14} s$	$2.1 \times 10^{-14} s$

strange metal

combine

 $A C+D C$ transportfraction not d

$$
\left[A_{\mu}\right]=d_{A} \neq 1
$$

probe by Aharonov-Bohm effect on underdoped cuprates:
extra dimensions

