

Pupin Labs @ Columbia

Beyond Cold Atoms

Indirect molecule cooling

Direct molecule cooling

buffer gas (sympathetic) cooling

Why Cold Molecules?

atomic H spectrum

New science

 \bigstar

 $\frac{1}{2}$

Quantum-state-controlled ultracold chemistry Dipolar quantum gases & many-body physics

Enhancement of EDMs and parity violation

New physics and "5th force"

Fundamental constants & variations

Ultracold Diatomic Molecules

Indirect molecule cooling

Tight Trapping: Optical Lattice Clocks

Molecular Lattice Clock

G. Reinaudi et al., PRL 109, 115303 (2012)

Science with Cold and Ultracold Molecules

• Ultracold chemistry

• Molecular clocks

• Table-top particle physics

Ultracold Chemistry

Quantum-state selected reactants and products

Bimolecular collisions $AB + AB \rightarrow A_2 + B_2$

Photoassociation A + A + $\gamma \rightarrow A_2^*$

Photodissociation $A_2 + \gamma \rightarrow A + A^*$

Ultracold Chemistry

Quantum-state selected reactants and products

Ultracold Chemistry

Quantum-state selected reactants and products

Photodissociation

$$Sr_2 + \gamma \rightarrow Sr + Sr^*$$

The "hydrogen atom" of ultracold chemistry

• Experiment \rightarrow first-principles theory \rightarrow comparison

Ultracold Photodissociation

Photofragment angular distribution

y

$$(J = 4; M = \pm 1)$$

Matter-wave interference $\rightarrow \phi$ dependence!

Photofragment Angular Distributions

Photofragment Angular Distributions

Field Control of Photodissociation

Comparable energies at ~ 1 mK:

- Kinetic
- Barrier
- Zeeman

Field Control of Photodissociation

Comparable energies at ~ 1 mK:

- Kinetic
- Barrier
- Zeeman

M. McDonald et al., PRL, accepted

Field Control of Photodissociation $Sr_2 + \gamma \rightarrow Sr + Sr^*$ Energy = 30 MHz = 1.5 mK $E_{\rm PD}$ Magnetic Field (G) 0.5 2.78 5.24 1.55 10.15 7.69 Th. Exp.

Key point: Mixing of partial waves in the continuum

M. McDonald et al., PRL, accepted

Science with Cold and Ultracold Molecules

• Ultracold chemistry

• Molecular clocks

• Table-top particle physics

Clocks

Coherence time of $|1\rangle+|2\rangle$ superposition

- Intrinsic
- Trap & environment

Two-Body Quantum Optics

Identical nuclei \rightarrow Inversion symmetry

Two-Body Quantum Optics

Subradiance

$$\frac{|\mu_{M1}|}{|\mu_{E1}|}^{2} \approx \left(\frac{R}{\lambda}\right)^{2} \approx 10^{-4}$$
 @ $R = 100 a_{0}$
Need $10^{4} \times$ suppression of E1!
 \rightarrow Molecules \checkmark

B. Bussery-Honvault and R. Moszynski, Mol. Phys. 104, 2387 (2006)

Two-Body Subradiance

B. McGuyer *et al.*, *Nature Phys.* **11**, 32 (2015) W. Skomorowski *et al., JCP* **136**, 194306 (2012)

Subradiant Lifetime

5.5 ms molecule-light coherence time

B. McGuyer et al., Nature Phys. 11, 32 (2015)

McGuyer et al., Nature Phys. 11, 32 (2015) <u>ю</u>.

"Magic" optical lattice trap

Coherent superposition of $|1\rangle + |2\rangle$

'Magic'-lattice optical absorption spectrum

Trap-Insensitive Spectrosopy

PRL 114, 023001 (2015) M. McDonald et al.,

"Magic" optical lattice trap

Heating/loss

Clock Based on Molecular Vibrations

- * No heating/loss!
 - * Easy to find

Science with Cold and Ultracold Molecules

• Ultracold chemistry

• Molecular clocks

• Table-top particle physics

New Mass-Dependent Forces

$$V = -\frac{GM^2}{r} \left(1 + Ae^{-r/\lambda}\right)$$

Yukawa

A < 10²¹ @ 1 nm !

 \rightarrow Need state-of-the-art measurement of van der Waals interatomic force

J. J. Lutz and J. M. Hutson, JMS 330, 43 (2016)

M. Borkowski *et al.*, arXiv:1612.03842

Molecular QED and 5th force

Molecular QED and 5th Force

Zlab

Current support: Columbia University, NSF, ONR, AFOSR, Templeton Foundation, Heising-Simons Foundation Mickey McDonald: APS DAMOP Doctoral Thesis Prize 2017

