Building tools and models to characterizeSFUbiological mechanics at the nanoscale

Nancy Forde

Department of Physics

also affiliated with Department of Chemistry and Department of Molecular Biology and Biochemistry Simon Fraser University, Burnaby, BC, Canada

Research interests

Synthetic molecular motors

Optical manipulation

Hierarchical protein mechanics

Surface chemistry

MAGIC assay

Length scales in the universe

From humans to quarks

Voyage into the world of atoms – from CERN

Proteins: nanometer length scale

Collagen is similar in size...

Collagen holds us together

Collagen: tensile material & template

Applications of collagen mechanics

Mechanics of single collagen proteins

Flexibility

Force response

Flexibility of single collagen proteins

Method	Persistence length, p (nm)	
Molecular dynamics	10-22	
AFM imaging	12	flexible triple helix
Optical tweezers stretching	11-65	
Electron microscopy	40-57	
Coarse-grained molecular dynamics	51	
Viscometry	130	
AFM imaging	135-165	
Rheology	161-167	stiff triple helix
Dynamic light scattering	160-165	

Rezaei, Lyons & Forde, Biophys. J. 2018

Flexibility of single collagen proteins

Structural models of hierarchical materials

Mechanics of fundamental building blocks

Flexibility relates to protein structure

- Denaturation of triple helix \rightarrow flexibility
- Local denaturation / unwinding necessary for controlled degradation *in vivo*

Cell biology

• How compact is collagen during secretion from cells?

Polymer physics

• Limited examples of semiflexible chains; underdeveloped theory

-500

400nm

Naghmeh Rezaei

Aaron Lyons

Rezaei, Lyons & Forde, Biophys. J. 2018

Fibrillar collagen types

AFM imaging of different collagen types

Aaron Lyons

Naghmeh Rezaei

N. Rezaei, A. Lyons and N.R. Forde, Biophys J 2018

Chain analysis principles

SmarTrace algorithm

User Input Spline

Refined Spline

Naghmeh Rezaei

N. Rezaei, A. Lyons and N.R. Forde, Biophys J 2018

M.W.H. Kirkness, K. Lehmann and N.R. Forde, submitted

Chain analysis principles: WLC

Segment Length, s (nm)

Rezaei, Lyons & Forde, Biophys. J. 2018

Segment Length, s (nm)

0.3

AFM imaging of different collagen types

N. Rezaei, A. Lyons and N.R. Forde, *Biophys J* 2018

Ionic strength and flexibility

Is collagen a worm-like chain?

Low ionic strength, acidic pH

Collagen: a curved WLC?

Low ionic strength, acidic pH

Collagen: a curved WLC?

Low ionic strength, acidic pH

Rezaei, Lyons & Forde, Biophys. J. 2018

Collagen: a curved WLC?

Low ionic strength, acidic pH

Rezaei, Lyons & Forde, Biophys. J. 2018

Outlook

Other applications of curved worm-like chain model?

• Tropomyosin, Amyloids, DNA, FtsZ, ...

Adapt SmarTrace to study sequence-dependent flexibility

• Fibrillar & nonfibrillar collagens

Mechanics of single collagen proteins

Flexibility

Force response

Collagen holds us together

Collagen: tensile material & template

Force-dependent collagen structure

Fratzl, Curr. Opin. Colloid Interface Sci. 2003

FORDE LAB

Mike Kirkness

 $F = m\omega^2 R$

1st Centrifuge Force Microscope (CFM): Halvorsen & Wong (*Biophys J* 2010)

1st Centrifuge Force Microscope (CFM): Halvorsen & Wong (*Biophys J* 2010)

Centrifuge force microscope

Centrifuge force microscope

- Microscope withstands >1000 g
- · Real-time, video-rate wireless communication
- Wide possible force range (tested 70 fN \rightarrow 70 pN)
- N = 100s-1000s of simultaneous, constant-force single-molecule measurements
- Cost ~ \$500

 $F=m\omega^2 R$

Highest acceleration?

Collagen cleavage under force

F=9 pN, room temperature (10X real time)

Collagen cleavage under force

Collagen cleavage under force

$$f(t) = A_{\text{eff}}e^{-k_{\text{eff}}t} + f_{\text{o}}$$

$$f_{\text{ns, }i}(t) = A_{\text{ns, }i}e^{-k_{\text{ns,}i}t} + f_{o}$$

$$f_{\text{Tr, }i}(t) = A_{\text{eff, }i}e^{-(k_{\text{Tr,}i}+k_{\text{ns,}i})t} + f_{o}$$

 $k_{\text{Tr, 0 pN}} = 0.009 \pm 0.013 \text{ min}^{-1}$ $k_{\text{Tr, 9 pN}} = 0.222 \pm 0.018 \text{ min}^{-1}$

force enhances collagen cleavage rate ~ 20-fold

Kirkness and Forde, *Biophys. J.* (2018)

Fibrillar/tissue context

Diameter of

Fratzl, Curr. Opin. Colloid Interface Sci. 2003

Fibrillar/tissue context

Strained tendon fascicles

Brighter = more triple helix damage

Zitnay et al., Nature Commun. 8, 14913 (2017)

Uncovering the molecular basis for **collagen mechanics**:

- Collagen's curvature (on mica) depends strongly on solution conditions
- Collagen's triple helical structure appears to destabilize with force

Facilitated by technical and theoretical developments:

- SmarTrace algorithm, appropriate for tracing noisy images of relatively short polymers
- curved worm-like chain polymer model

SFU

• centrifuge force microscope (CFM) for highly parallel single-molecule force spectroscopy

Forde group, April 2018