What's Kelvin's Problem?

Randall D. Kamien Physics & Astronomy

Ziherl and RDK, *PRL* **85** (2000) 3528 Ziherl and RDK, *J. Phys. Chem.* B **105** (2001) 10147 Kung, Ziherl and RDK, *PRE* **65** (2002) 050401R Grason, DiDonna and RDK, *PRL* **91** (2003)

www.physics.upenn.edu/~kamien/

What's Kelvin's Problem?

Randall D. Kamien Physics & Astronomy

Dendrimers and Diblocks Sphere Packings Minimal Surfaces & Soap Froths Diblock Copolymers Experiment

Ziherl and RDK, *PRL* **85** (2000) 3528 Ziherl and RDK, *J. Phys. Chem.* B **105** (2001) 10147 Kung, Ziherl and RDK, *PRE* **65** (2002) 050401R Grason, DiDonna and RDK, *PRL* **91** (2003)

www.physics.upenn.edu/~kamien/

Percec's Dendrimers

Rational Design of Geometry

Antimicrobials

Nanopores and Nanoreactors

Penn

Self-Assembly of Lattices

Pm3n Symmetry AI5 Lattice

Self-Assembly of Macromolecular Assemblies

Qualitative Pair Interaction

distance

Hard Core Bulk Free Energy

Hard Core Bulk Free Energy

Soft Corona Interfacial Free Energy

Triangular Lattice

Johannes Kepler (1571-1630)

BCC

FCC

A15

Zentsuji, Japan

Bit Bip Bap Bab Bob Bog Dog Dig

Bit	Bit
Bip	
Bap	Bap
Bab	
Bob	Bob
Bog	
Dog	Dog
Dig	
	Detect Errors!

Bit	Bit	Bit
Bip		
Bap	Bap	
Bab		Bab
Bob	Bob	
Bog		
Dog	Dog	Dog
Dig	Ŭ	Ŭ
0	Detect Errors!	Correct Errors!

Packing Density Depends on Dimension!

Sloane, Documenta Mathematika, Vol. III (1998) 387

Bulk Free Energy

F=-TS

- FCC has more entropy than HCP
- Global, not local

Hard Core Bulk Free Energy

Soft Corona Interfacial Free Energy

Minimizing the Perimeter

Minimizing the Perimeter

Area = hard cores + matrix of coronas

Minimizing the Perimeter

Area = hard cores + matrix of coronas

Area= perimeter x thickness

Joseph Antoine Ferdinand Plateau (1801-1883)

Minimal Surfaces

Catenoid

Four-End Handled

Costa-Hoffman-Meeks

Scherk's First Surface

Graphics from MSRI - http://www.msri.org/publications/sgp/ © 1998, James T. Hoffman and MSRI

Minimal Surfaces

Schwartz P

Neovius

Diamond

Gyroid

Graphics from MSRI - http://www.msri.org/publications/sgp/ © 1998, James T. Hoffman and MSRI

William Thomson Lord Kelvin (1824-1907)

Kelvin's Problem

What regular partition of space into cells of equal volume has minimal surface area?

1943: Hexagon best polygon 1999: Honeycomb best (Hales)

Kelvin's Conjecture (1887)

Rhombic Dodecahedra

Thomson, Phil. Mag. 24 (1887) 503

Weaire and Phelan's Conjecture (1994)

Smaller than Kelvin's!

Weaire & Phelan, Phil. Mag. Lett. 69 (1994) 107

The Numbers

Interfacial Free Energy

Percec's Dendrimers

Intermicellar Potential

$$U = \frac{2\ell N k_{\rm B} T}{d}$$

- N: chains per micelle
- d: thickness of chain matrix
- *l*: Flory-like parameter

transition	l	entropy per chain
FCC-BCC	0. I R	0.5k _B
BCC-AI5	0.3R	I.5k _B

at melting point

Diblock Copolymers

Diblock Copolymers

Graphics from MSRI - http://www.msri.org/publications/sgp/ © 1998, James T. Hoffman and MSRI

Diblock Copolymers

Spherical Micelles

Voronoi Cells

Frustration in Diblocks (Strong Segregation)

 As φ→0, interface ignores shape of unit cell due to high curvature

Uniform Interface Curvature vs. Uniform Domain Thickness

 As φ→1, tension imposed by of cell wall is propagated to interface

Free Energy: Tension vs. Stretching

Grason, DiDonna & RDK, Phys. Rev. Lett. 91 (2003)

Interfacial Energy

Free Energy: Tension vs. Stretching

Lattice Problems

• Packing maximize the inradius of the Voronoi Cell

• Covering minimize the circumradius of the Voronoi Cell

• Quantizing minimize the "moment" $\int_{\Pi} x^{2}$ $G(\Pi) = \frac{\int_{\Pi} (d+2)/d}{d \operatorname{Vol}(\Pi)^{(d+2)/d}}$

• Channel Coding minimize the error

$$P_{e}=1-\mathcal{N}\int_{\Pi}e^{-x^{2}/2\sigma}$$

Lattice Problems

• Quantizing

• Packing maximize the inradius of the Voronoi Cell

• Covering minimize the circumradius of the Voronoi Cell

minimize the "moment" $G(\Pi) = \frac{\int_{\Pi} x^{2}}{d \operatorname{Vol}(\Pi)^{(d+2)/d}}$ appel Coding

 Channel Coding minimize the error

$$P_e = 1 - \mathcal{N} \int_{\Pi} e^{-x^2/2\sigma}$$

G(∏)

0.0787 +0.26 %

0.0785

A15

BCC

0.0787 +0.26 %

Final Energy

FCC	G(∏)	Area	Free Energy
	0.0787	5.345	
BCC	0.0785	5.315	
A15	0.0787	5.297	

Penn

Grason, DiDonna & RDK, Phys. Rev. Lett. 91 (2003)

Final Energy

FCC	G(∏)	Area	Free Energy
	0.0787	5.345	1.077 +0.61%
BCC	0.0785	5.315	1.072 +0.14%
A15	0.0787	5.297	1.071
	Sphere energy: 1		

Grason, DiDonna & RDK, Phys. Rev. Lett. 91 (2003)

Self-Consistent Field - Linear

Matsen & Schick, PRL 72 (1994) 2660

SCFT Results for Miktoarm Diblock Copolymers

Grason & Kamien, Macromolecules 37 (2004) 7371.

Experimental System

Frustration

diblock micelles in solution

Conclusions and Summary

mathematics of minimal surfaces & lattices

chemical synthesis

thermodynamics

designer crystals

Conclusions and Summary

mathematics of minimal surfaces & lattices

chemical synthesis

thermodynamics

designer crystals

When you see a branch, take it

Acknowledgments

 Theory
 (www.physics.upenn.edu/~kamien/kamiengroup/)

 Primoz Ziherl (University of Ljubljana)

 Gregory Grason (PENN)

 Olivia Halt

 William Kung (Syracuse)

 Brian DiDonna (Minnesota)

<u>Experiment</u> Virgil Percec (PENN)

<u>Support</u>

NSF: NIRT DMR01-02459 DMR01-29804 INT99-10017 (with Orsay) Pennsylvania Nanotechnology Institute Petroleum Research Fund (ACS)

