Quanium information:

from the optics laboratory to the "real" world
Kevin Resch
IQC, Dept. of Physics
University of Waterloo

Institute for Quantum
Computing

Institute for Quantum Computing

- Founded 2001 at University of Waterloo
- 14 faculty
- 6 post-docs
- ~50 students

Always looking for more!

Optical gladkiOMitlintermation

Nonlinear Optics

Quantum
Information
Quantum Foundations

Quantum	Quantum	Quantum
Computation	Communication	Metrology

- Measurement- - One-way quantume

Free-space entanglement distribution

- Linear optics nonlinearity computation entangling gates - Entanglement Purification
- Classical analogues of quantum interference
- Weak measurement
- Multipartite entanglement
- Nonlocality tests

Quantum information

Quantum bits can be 0 or 1 but also superpositions

> bit: 0 or 1 qubit: $\alpha|0\rangle+\beta|1\rangle$

Photon Polarization
Atomic Levels

Familiar quantum features

- Uncertainty principle

W. Heisenberg

Position

Momentum

- No-cloning theorem

$$
|\psi\rangle\langle 0\rangle \xrightarrow{\triangle O O P E} \longrightarrow \psi\rangle \psi\rangle
$$

Wootters

Zurek

Dieks

...leads to ultimate cryptosystem

C. Bennett, G. Brassard 1984
...leads to ultimate cryptosystem

Attempting either strategy will lead to errors in the detected signal

Single photons An eavesdropper are sent in one must make of two noncommuting basis states
measurements to learn about the state, but cannot
do so without disturbance
Nor can the (HUP) eavesdropper make identical
copies of the
state and make measurements on them (no-cloning)

More quantum features

- Superposition
- A quantum system can be in many states at the same time

$$
\left.|\Psi\rangle=\frac{1}{\sqrt{N}}(\psi \psi\rangle_{1}+|\psi\rangle_{2}+|\psi\rangle_{3}+\ldots\right)
$$

- Interference

...more powerful computers

Feynman

Deutsch

Megatremant te seltitscaraikpsita Bapetorosixiveptf thatoingitenterence (rijolevertate to a s (goniftamisiogamf ateducsilithong answersitates

Entanglement

$$
\begin{aligned}
|\psi\rangle_{12} & \left.=\frac{1}{\sqrt{2}}|0\rangle_{1} \otimes|0\rangle_{2}+|1\rangle_{1} \otimes|1\rangle_{2}\right) \\
& =|00\rangle+|11\rangle \quad \text { "Bell state" }
\end{aligned}
$$

- Foundation for most quantum information protocols

Optical photons as qubits

- Polarization

- Time-bin

- Spatial modes

- Freq. encoding

Optical photons as qubits

The Good

The Bad

The Ugly

- Single-qubit operations
- Low decoherence o No natural
- High speed
- Perfect carriers of quantum information
- Easy to lose a photon
interactions/weak nonlinearities means 2-qubit operations are hard
- Linear optics proposals for scalable quantum computing are extremely complicated ($\sim 50-1000$ s of ancillas/elements per CNOT)

Entangled Photon Source

Parametric Down-conversion
"blue" photon \square two "red" photons

Phase matching:

$$
\begin{aligned}
& \omega_{\text {pump }}=\omega_{\mathrm{s}}+\omega_{\mathrm{i}} \\
& \overrightarrow{\mathrm{k}}_{\text {pump }}=\overrightarrow{\mathrm{k}}_{\mathrm{s}}+\overrightarrow{\mathrm{k}}_{\mathrm{i}}
\end{aligned}
$$

Type-II Down-conversion

Entangled Pair

$$
|\psi\rangle=\frac{1}{\sqrt{2}}\left(|H\rangle_{1}|V\rangle_{2}-|V\rangle_{1}|H\rangle_{2}\right)
$$

H-Photon

Confused

Correlated V-Photon

Recent source advancements

- High-power UV laser diodes (cheap, easy to use -> UG lab!)
- Efficient single-mode coupling (longdistance, low divergence, free-space)
-4-, 5-, and 6-photon entanglement
- Controllable entanglement - fundamental tests and quantum computing

State of the art

NumberuofepBbitgotrisnessangled

Distributing Entanglement

- Photons are the ideal carriers
- Practical quantum communication needs shared entanglement over long distances
- Challenges: High efficiency (no cloning) and high background rejection (single photons)

Entanglement takes to the air

Quantum correlations

- A "Bell experiment"
+1
路
 Set $\left\{A, A^{\prime}\right\}$ Set $\left\{B, B^{\prime}\right\}$ $日^{-1}$
- Local properties (ex. $A=+1, A^{\prime}=-1, B=+1, B^{\prime}=+1$)

$$
A\left(B+B^{\prime}\right)+A^{\prime}\left(B-\bar{B}^{\prime}\right)=2
$$

- CHSH-Bell inequality (req. 16 measurements)

$$
S=\left|\left\langle A B+A B^{\prime}+A^{\prime} B-A^{\prime} B^{\prime}\right\rangle\right| \leq 2
$$

- QM allows $\mathrm{S}=2 \sqrt{2}=2.83$

Freespace 1 Resulfis

- Measured $5=2.4 \pm 0.1$ (larger than 2 indicaties entanglement)
- Two links 500 m \& 100 m
- ~10 coincidences/s
- SMF-SMF Coupiling
- Time-stable channel

Polarization correlations
Science (2003)

The next step

- 500 m to 7.8 km (the atmosphere straight up is 7.3 km thick)
- No more cable
- Light passed over a city - likely realworld scenario

Atmospheric fluctuations

Receiver module
" $=$

淆

3 il
-
c. H.
$\stackrel{1}{8}$
$v=$

$+2$
Receiver module.

> d $=$
450

$-\frac{8}{6}+$

To detector
PBS

宥
NR ${ }^{4}$
PBS
$c t$
ct
(3) $50 / 50$
(i)

T.

PBS

(1)
$\$$

$$
0 \quad 0
$$

Practicalities

- Absence of good single-photon sources
- Can use quantum randomness to select state:

$$
\begin{aligned}
& |H H\rangle+|V V\rangle \\
& =|45,45\rangle+|-45,-45\rangle
\end{aligned}
$$

- Triggered single photons, reduced "empty" pulses |0> and double photons |2>
- Laser frequency monitoring unnecessary

Entanglemen Prares fo the air 2

again!

Freespace 2
Q3 Tert Range MLaser Sourcel

Q Millenalum Cin (BOB)

Inste Et Experimentaliphysik
nor sternowarte (ALICE)

Freespace 2 Results

		Millenium Tower (Bob)			
		$22.5{ }^{\circ}$	112.5°	67.5°	157.5°
	0°	1469	5763	6500	1067
	90°	4015	1305	1483	2959
	45°	2171	9103	2633	6357
	135°	5373	1701	6889	1090

- Two links 7.8 km and $10^{-4} \mathrm{~km}$
- 25 ccps found over time tags/internet
- Single-mode fibre to spatial-filter coupling
-14-б Bell violation, all 16 meas. taken simultaneously

Remaining challenges

- Longer distances, Higher bit rates
- Active components to compensate atmosphere
- Long-distance quantum interference (repeaters)
- Full cryptography, different protocols
- Moving targets (satellites, airplanes)

IQC free-space experiment

\author{

- Gregor Weihs
}
- Raymond Laflamme
- Chris Erven

One-way quarnitum computation with a multi-photon clusiter state

Photonic one-way quantum computation

- Philip Walther (Vienna \rightarrow Harvard)
- Terry Rudolph (Imperial)
- Emmanuel Schenck (Vienna \Rightarrow ENS)
- Vlatko Vedral (Leeds)
- Markus Aspelmeyer (Vienna)
- Harald Weinfurter (LMU, Munich)
- Anton Zeilinger (Vienna)

QC - Circuit vs. One-way model

One-way model

Raussendorff \& Briegel, PRL 86, 5188 (2001) Optics: Neilsen; Browne/Rudolph

One-way quantum computing

- Cluster states can be represented by graphs

Processing encoded information

- How measurement can compute
- Equivalent quantum circuit

More general computations

Number of operations

Making cluster states

$$
\begin{aligned}
\mid \psi> & =|H H H H\rangle+|H H V V\rangle \\
& +|V V H H\rangle-|V V V V\rangle
\end{aligned}
$$

Polarizing Beam-splitter

- Quantum "parity check"

The four-photon cluster

Quantum state tomography Reconstructed density matrix

Fidelity $=63 \%$

Clusters to circuits

- Horizontal bond:

- Vertical bond: 2:B(β 1:

Clusters to circuits

- Multiple circuits using a single cluster

- Different order of measurements

Two-qubit computations

Single \& two-qubit operation

Single-qubit rotations

Fid ~ 83-86\%

Two-qubit operations

Separable
Fid = 93\%
Tangle $=0$

Entangled
Fid = 84\%
Tangle $=0.65$

Grover's Algorithm

Growed

 Growden ER K Whanisitisino

5412937441 Minlis Sercice

Growder

 Grondanowike [21Evone
 Brevier A 4 Grosing ar
 \qquad $\frac{38070}{5010} 5$

 Grutae S 1700 NaCheraseins
GW0...")
 7262 8990 grut
E. EntakTaspa 39904055 Urite

$0412 \pi 2122$ 94137278

I kk E GOPMmanlaRi
Uratrad

32192045
seytrinis w..........
3345526

Grow KM 620 mpdetabikn - 35344764 Growed

Hy \& Ferti E 4 \&Sed fithel
wist \qquad $375-45$
412056 Orowden E K Niowtamsthileress Minls Streic... 0412987 4at
Browder

84.43A dowhwh Phy-wvivi 3397.2159

 rendatove
 aroudamowice r: 22 Evicte

 Grisjer A 4Liphlatrdi _......... 3420763 Qroainger

 Crulare 8.170 0wackerisulis

53943544
3262 87\%

Best Classical: $O(N)$ queries Quantum: $O(5 \mathrm{~N})$ queries

 dryiz Unsorted database :
Conclusions and Future directions

- First demonstration of one-way quantum computation using cluster states
- Experimental
- Larger cluster states = more complex circuits
- Feed-forward - two types - easy and hard
- Theoretical
- Different geometries and measurements
- Higher dimensions

Summary

* "Real" world
- First experiments demonstrating free-spaceentanglement distribution
* Ideal world
- First demonstration of Cluster State Quantum Computing - including the first algorithm

Der Wissenschaftsfonds.

Clusters/Grover's Algorithm

-90\% correct computational output

- First algorithm in the cluster model

Grover's algorithm

- Quantum parallelism
- GA initializes the qubits to equal superposition of all possible inputs

Element

- Interference
- "Inversion about the mean" amplifies the correct element and reduces the others
- On a query to the black box (quantum database/phonebook), the sign of the amplitude of the special element is flipped

THANK YOU!

Institute for Quantum Computing

Australian Government
Australian Research Council

