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SAFOD -- Aborehole observatory across the San Andreas
Fault to directly measure the physical conditions under which
earthquakes occur

Plate Boundary Observatory -- A fixed array of GPS
receivers and borehole strainmeters to measure real-time
deformation on a plate-boundary scale

USArray -- A continental-scale seismic array to provide a
coherent 3-D image of the lithosphere and deeper Earth
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Dnlling into the San Andreas Fault
® GPS Stations
¢ Borehole Strainmeters
' Long-baseline Laser Strainmeters
\ Transportable Seismic Stations

Aiﬂorm anant Seismic Statons

www.earthscope.org




Surface Trace of
San Andreas Fault
Middle Mountain

San Andreas
Fault Observatory
at Depth (SAFOD)

The central scientific
objective of SAFOD is
to directly measure the
physical and chemical
processes that control
deformation and
earthquake generation
within an active plate-
bounding fault zone. 48 mm/yr
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Earthquake Experiment

SAFOD (San Andreas Fault
Observatory at Depth)

Historical M 6
Parkfield Earthquakes

Mainshock
m Nucleation /]
Point

EQ Sequence

1850 1900 1950 2000 2050

7' Surface Monitoring Instrumentation
|(seismometers, creepmeters, strainmeters,
N. end of M 8 ) water wells, laser rangefinders, GPS
1857 Rupture Zone receivers, etc.)
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In Plane of SAF Perpendmular to SAF

Strand

Fault Creeping - .
Avg. ~ 2.5 cmlyr ~200 m

Distance Along Strike  Distance Perp. to Strike

Nadeau et al. 2004, Waldhauser and Ellsworth 2005

Repeat rate of SAFOD target earthquakes increased in
response to M 6 Parkfield Earthquake of Sept. 28, 2004
(surface creep rate also up, now ~ 5 cm/yr)
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U.C. Berkeley (HRSN) stations JCN, MMN and VCA (R. Nadeau)
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Red: Post-M6 repeat of SAFOD Target Earthquake, October 1, 2004
Black: Preceding occurrence of Target Earthquake, October 20, 2003

In both cases, SE earthquake (Group 2) followed within a day of this event.
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Test fundamental theories of earthquake mechanics:
» Determine structure and composition of the fault zone.

» Measure stress, permeability and pore pressure conditions
in situ.

» Determine frictional behavior, physical properties and
chemical processes controlling faulting through laboratory
analyses of fault rocks and fluids.

Establish a long-term observatory in the fault zone:
» Characterize 3-D volume of crust containing the fault.

» Monitor strain, pore pressure and temperature during the
cycle of repeating microearthquakes.

» Observe earthquake nucleation and rupture processes in
the near field. Are earthquakes predictable?



Surface Trace of

Middle San Andreas Fault

SAFOD Mountain

June - October 2004
(Pilot Hole drilled summer of 2002)

Phase 1: Rotary Drilling to 2.5 km

Drilled 12-1/4” hole to 2.5 km, while
collecting continuous drill cuttings and
carrying out mud gas analyses.

Below 1.5 km, steered hole toward target
earthquakes (deviation 55°).

Conducted wireline geophysical logging in
open hole.

After setting casing, obtained 20 m of 4” M 2.1:Target

diameter core at 1.5 and 2.5 km. ~ Earthquake
Conducted permeability tests, fluid
sampling and hydrofracs in core holes. B
) ) Resistivities Unsworth & Om
Following Phase 1 - Deploy seismometers Bedrosian 2004 ; VE 1:1

at bottom of hole for refinement of velocity Earthquake locations

structure and location of target Roecker & Thurber 2004 1000 100 10 1
earthquakes.




Surface Trace of
San Andreas Fault

Middle
Mountain

June - September 2005

Phase 2: Drilling Through Fault Zone

Drilled inclined 8-1/2" hole from 2.5to
3.1 km.

Conducted extensive real-time
cuttings and mud gas analyses while
drilling across the fault zone.

Conducted comprehensive logging
while drilling and wireline geophysical
logging in open hole.

Collected 52 small (0.75” dia. x 1)
side-wall cores in open hole.

After setting casing, collected 4 m of
2.6” dia. spot core at 3.1 km and
carried out hydrofrac in core hole.

Monitoring casing deformation, 1000100 10 1
microseismicity and tremor.
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*Frustrating — Top Drive
Problems Caused Significant
Unexpected Expenses

*Terrifying — Being Stuck for
Several Days at 12,300’

*Challenging — Maximizing
Scientific Return Within
Operational and Budgetary
Constraints

*Exhausting — 24/7 |Is Not
Just an Expression
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Test fundamental theories of earthquake mechanics:
» Determine structure and composition of the fault zone.

» Measure stress, permeability and pore pressure conditions
in situ.

» Determine frictional behavior, physical properties and
chemical processes controlling faulting through laboratory
analyses of fault rocks and fluids.

Establish a long-term observatory in the fault zone:

» Characterize 3-D volume of crust containing the fault.

» Monitor strain, pore pressure and temperature during the
cycle of repeating microearthquakes.

» Observe earthquake nucleation and rupture processes in
the near field. Are earthquakes predictable?



3-Component Seismometer

Surface Trace of
San Andreas Fault

Middle
Mountain

Laser Strainmeter

SAFOD 855 m Fiber Optic Strainmeter during M 2.8 Parkfield earthquake

10F-

17:14:30 17:15:00 17:15:30 17:16:00
Time, 6.July 2005 UTC
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Borehole Tiltmeter
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Earthquake(s) recorded 7/6/05, 937 and 10:15 PDT




Borehole Seismic Array — May 2005
Paulsson Geophysical Services, Inc.
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Mainshock
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Test fundamental theories of earthquake mechanics:

> Determine structure and composition of the fault zone.

» Measure stress, permeability and pore pressure conditions
in situ.

» Determine frictional behavior, physical properties and
chemical processes controlling faulting through laboratory
analyses of fault rocks and fluids.

Establish a long-term observatory in the fault zone:
» Characterize 3-D volume of crust containing the fault.

» Monitor strain, pore pressure and temperature during the
cycle of repeating microearthquakes.

» Observe earthquake nucleation and rupture processes in
the near field. Are earthquakes predictable?



ST

R
SRl e
v

n

ime

Sed




1000

N Qtp
R T : Y Tew
SRl T o
S amel
77 vy i e 2 Tvr
S| [P N g
e SRR
[ ot 3 a
oo RATcy L =0 Tee
BT oo A NG e
g s

% Granite

Arksosic
Sandstone

Ark. ss with
7| interbedded
- conglomerate

Great Valley
formation

3500 -

\ I I
0 500 1000 1500

Distance Along Trajectory, m

2000

2500



500

1000

1500

Depth, m

2500

3000

3500 -

SAF

SAFOD Main
Borehole

2000 ‘

1% 3%
//’ )
S
. /|
Pilot Hole : /
VA |
i .

R LTTTTTI .,

1»: - :.
H L
e [t -
Earthquake Locations P .
Modified from 'J
H.Zhang and C.Thurber I
1 T I I
0 500 1000 1500

Distance Along Trajectory, m




Host Rock

Undeformed / \ \ Damage Zone ¢ L i

TN
Low velocity

Low resistivity
Modified from Chester et al., 2005



S\W Lithology from On-Site Cuttings Analysis NE

POFOSity Sandstone Shale  Siltstone Claystone
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S\W Lithology from On-Site Cuttings Analysis NE

POFOSity Sandstone Shale  Siltstone Claystone
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POTOSity Sandstone Shale  Siltstone Claystone
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Casing Deformation
Creeping Fault
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San Andreas Fault Zone
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Deformation of Casing Indicates
Broad Zone of Deformation
Correlative with Anomalous

Physical Properties
May 5, 2005

M O event
0
2000¢-----
(570] 0] ESESE— %
: : May 5, 2005
5 M O event
§ 1000] - e

i N Zone of Most Intense Deformation
500 (~5—16 m) Correlative with
: ’ Very Low V,, V, High Porosity




FZ Guided Wave

Resis| &
i
il n
® Detectialn
P-onset LHPJ
E S-onset
Gamr : Syn. p-onset
Syn. s-onset
L 2 205 3 315 4
«Af 06-Feb-2006 03:58:09.9678 Rel. time in [s]
r — T w T At o R = [ e L e =
| | | | | | | | | O
Vs I
| I I I I I I I I
- 13
‘ km/s
= 42
Vp Low VeIOC|ty Zone .
B 5
km/s
4
| | | | | | 3
3000 3100 3200 3300 3400 3500 3600 3700 3800 3900 4000

Measured Depth (m)



Crustal
Shear Velocity Anisotropy:
Stress or Structure

a Fast Axis

\ East

/;//'! +
Slow Shear yal

| / Fast Shear

2
Slow Axis

S A—

Distance NS [km)
[

=1
5 -0 -5 0 & 10 15

Stress-induced

Anisotropy

I

Structural
Anisotropy

F

Slow

ast

k
S|G‘N>
Fast <

-
=

Distance EVY (kmi)

Diztance NS [(km)

- r— qStructure
s

5
-5 -10 -5 0 5 10 15
Dis@anoce EVY (kmi)

Distanca 48 (kmj
I

=15
-15-10 -5 0 5 10 15

Distance EYV (lm)



-122 -120



Test fundamental theories of earthquake mechanics:
» Determine structure and composition of the fault zone.

» Measure stress, permeability and pore pressure conditions
in situ.

» Determine frictional behavior, physical properties and
chemical processes controlling faulting through laboratory
analyses of fault rocks and fluids.

Establish a long-term observatory in the fault zone:
» Characterize 3-D volume of crust containing the fault.

» Monitor strain, pore pressure and temperature during the
cycle of repeating microearthquakes.

» Observe earthquake nucleation and rupture processes in
the near field. Are earthquakes predictable?



depth [m]

State of Stress and Pore
Pressure Within an Active
Plate-Bounding Fault Zone
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Nadeau et al. 2004, Waldhauser and Ellsworth 2005
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Vertical stress
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Effective mean stress, S-Pr (MPa)

Differential stress, AS (MPa)
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Shear Stress

"Strong" Fault - Frictional Strength controls failure

"Weak" Fault - What controls strength/rupture initation?
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Heat Flow (mW/m?)
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Saffer, Bekins & Hickman 2003
embedded heat source at fault

Pf = atmospheric; T = 10 C linear increase with depth
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even for wide range of assumed permeabilities.

In fact, high permeability (red line) would actually accentuate near-surface heat flow

NE of fault, contrary to what is observed.
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Depth, meters

From breakouts and tensile crac'ks,
using log-derived rock strengths
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SAFOD Shear Velocity (Boness & Zoback, GRL, 2004)
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SAFOD Heat Flow
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Test fundamental theories of earthquake mechanics:
» Determine structure and composition of the fault zone.

» Measure stress, permeability and pore pressure conditions
in situ.

» Determine frictional behavior, physical properties and
chemical processes controlling faulting through laboratory
analyses of fault rocks and fluids.

Establish a long-term observatory in the fault zone:
» Characterize 3-D volume of crust containing the fault.

» Monitor strain, pore pressure and temperature during the
cycle of repeating microearthquakes.

» Observe earthquake nucleation and rupture processes in
the near field. Are earthquakes predictable?



Fault Sealing Models Motivated by:

Geologic studies of exhumed faults:
» Repeating cycles of mineral
precipitation (crack sealing) and
refracturing, even at depths as
{ Blanpied et al. 1992 shallow as 2 - 3 km

Byerlee 1993
Fournier 1996

Impermeable barriers
(due to mineral precipitation)

Porosity
\l\l\l\ Viscous compaction of fault
gouge after earthquakes
_ r i could lead to fluid pressure
Fluid Pressure L1 L1 fluctuations that are

intimately related to the
earthquake cycle.

Time > Sleen & Blannied 1992. 1995




P ‘\/ -

Permeable conduit
(leaky aquifer)

Permeable conduit model requires
continual fluid input from deep
crustal fault zone “root”.

4.0 50 © MHS
o
3.0} 37 ﬁ Middle Mt.
a—: 5
- 2
220[% o e E
1= VP
e [ % , °
1.0p12 Y .
A SCma “
lﬂ‘ F Y o :
80 40 0 40 80
Distance from strike of SAF (km)
West < | > East

Kennedy et al. 1997

There is some support for this
“leaky” fault zone model from
geochemical observations along the
San Andreas Fault.
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Depth, m
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San Andreas Fault Zone
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Observatory and Fault Zone Monitoring Is
Operational - Detection of Non-Volcanic Tremor

San Andreas Fault is a Broad Zone with Distinct
Composition and Anomalous Physical Properties

Evidence for Multiple Active Traces at Depth

Pore Pressure — The San Andreas is a Barrier to
Fluid Flow (mantle helium on NE side of fault )
But it Does Not Appear to be Overpressured

The San Andreas is a Weak Fault in a Strong
Crust




Observatory and Fault Zone Monitoring Is
Operational - Detection of Non-Volcanic Tremor

San Andreas Fault is a Broad Zone with Distinct
Composition and Anomalous Physical Properties

Evidence for Multiple Active Traces at Depth.

Pore Pressure — The San Andreas Is a Barrier to
Fluid Flow (mantle helium on NE side of fault )
But it Does Not Appear to be Overpressured

The San Andreas is a Weak Fault in a Strong
Crust — But Why?




Heat-flow constraint and fault-normal

compression (Symax at 75°or more to SAF)
require either:

)

2)

3)

Low friction (un <0.1) along the fault
and high friction elsewhere

or

Super-lithostatic pore pressure
confined to the fault zone

and/or

Dynamic weakening mechanisms




Heat-flow constraint and fault-normal
compression (Symax at 75°or more to SAF)
require either:

1) Low friction (u <0.1) along the fault
and high friction elsewhere

or
2) Super-h ati ressure
confi o the fau
and/or

3) Dynamic weakening mechanisms
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Frictional coefficient

rith

0.8

— Arkosic sandstone|Host
— Siltstone Rocks
— Red-brown fault gouge
— Dark -brown fault gouge

1.3m/s slip rate
1.3MPa normal stress

5 10 15
Displacement (m)

High-Speed Friction of Fault-Rocks from SAFOD

a, J.Chester, T. Shimamoto, F.M. Chester - Texas
A&M University and Kyoto University)

Fault-rock samples from the
shear zone at 3067 m,
deformed wet.

Dramatic reduction of friction
at coseismic slip rates.

Initial friction and critical slip
distance varies with rock type

Behavior similar to
Punchbowl ultracataclasite.

May be due to cataclasis and
shear localization, with flash
heating at asperity contacts
and/or thermal pore fluid
pressurization with increasing
displacement.

TEM and optical examination
of materials before and after
shearing underway.



Test fundamental theories of earthquake mechanics:
» Determine structure and composition of the fault zone.

» Measure stress, permeability and pore pressure conditions
in situ.

> Determine frictional behavior, physical properties and
chemical processes controlling faulting through laboratory
analyses of fault rocks and fluids.

Establish a long-term observatory in the fault zone:
» Characterize 3-D volume of crust containing the fault.

» Monitor strain, pore pressure and temperature during the
cycle of repeating microearthquakes.

» Observe earthquake nucleation and rupture processes in
the near field. Are earthquakes predictable?



Surface Trace of
San Andreas Fault

Middle
SAFOD Mountain

More to come
SAFOD Phase 3 Drilling:
June - August 2007

Phase 3: Coring the Multi-Laterals

Mill through casing and
continuously core 4 holes
extending 250 m from main hole to
intersect actively deforming traces
of San Andreas Fault.

Conduct fluid pressure,
permeability and hydrofrac tests in
core holes.

Leave one core hole open for long-
term fluid pressure monitoring in VE 1:1
the fault zone.

1000 100 10 1



Core Holes to Sample
Seismic and Creeping
Segments
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Nadeau et al. 2004, Waldhauser and Ellsworth 2005
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« We Have Established Access to the
San Andreas Fault at Seismogenic

Depth

« Many Aspects of Earthquake
Research Being Impacted

«Earthquake Physics
Fault Rock Geology

Rock Mechanics

*Role of Fluids and Gases

Measurements Carried Out Within
the San Andreas Fault Zone
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Looking Forward -
Phase 3 in 2007



