Sorcery to Science: how Hollywood Physics impacts the Sciences

Eitan Grinspun

Columbia University

these images are frozen in time

animation: a brief history

3rd millenium B.C.

Persían vase depícts motion of goat

1877 Praxinoscope (C.E. Reynaud)

1937 Snow White (W. Disney)

all was well...

until computers came and broke everything

birth of computer animation

TX-2 Operating area, Sketchpad in use

1995 Toy Story (Disney/Pixar)

THE FOLLOWING **PREVIEW** HAS BEEN APPROVED FOR **APPROPRIATE AUDIENCES** BY THE MOTION PICTURE ASSOCIATION OF AMERICA, INC.

www.mpaa.org

www.filmratings.com

Kepler's Second Law

Newton's Proof Principia Frq. 13.

Symplectic Euler

Source: Hairer, Lubich, Wanner

 $q_{n+1} = q_n + h \cdot p_n$ $p_{n+1} = p_n + h \cdot F(q_n)$

 $q_{n+1} = q_n + h \cdot p_n$ $p_{n+1} = p_n + h \cdot F(q_{n+1})$

Symplectic Euler

Source: Hairer, Lubich, Wanner

Chladni's vibrating plates

Chladni's vibrating plates

Bending Energy

Fn. of principal curvatures

- even 🖌 orientation invariance

S. Germain

$$E_b(S) = \frac{1}{2} \int_S H^2 \mathrm{d}A$$

Symmetries \Leftrightarrow Conservation Laws

Invariant under Möbius group

rigid motion
uniform scaling

Conservation laws (Noether's Thm)

linear & angular momentum

E. Noether

 $E_b(S) = \frac{1}{2} \int_S H^2 \mathrm{d}A$

Computing discrete shells

Discrete Shells: Modeling Paper

Isotropic Y = 40

Vertical Y0 = 1.e-4, Y1 = 10, G = 5

with Akash Garg, Max Wardetzky, Denis Zorin

Enforcing Inextensibility

with Rony Goldenthal, David Harmon, Rannan Fattal, Michiel Bercovier

inextensibility of cloth inextensibility of cloth
^{inextensibility} of cloth inextensibility of cloth
inextensibility of close inextensibility of cloth
^{inextensibility} of cloth inextensibility of cloth
^{inextensibility} of cloth inextensibility of cloth
inextensibility of cloth inextensibility of cloth

Cloth Model

Stiff Springs

Constrained Lagrangian formulation

Rony Goldenthal, with D. Harmon, R. Fattal, M. Bercovier

 \mathcal{X}

C(x) = 0

 x_0

timester

project

focus on the wrinkles & folds

"CHARMS adaptive simulation" (with Petr Krysl and Peter Schröder)

computation focuses on wrinkles

"Robust Treatment of Simultaneous Collisions"

Rigid Impact Zones

with David Harmon, Etienne Vouga, Rasmus Tamstorf

Stabilized Iterative LCP

"Discrete Elastic Rods," Miklós Bergou, Basile Audoly, Max Wardetzky

computing motion of elastic rods

credits:Weta Digital (New Zealand)

... behind-the-scenes: hair workout

Twist-Free Frame

Twist-Free Frame

is there life beyond hollywood?

computation experiment

new insight

U. C. Berkeley, U. N. C. Chapel Hill, & Johns Hopkins University using "Discrete Elastic Rods"

Basile Audoly, University Paris Marie et Pierre Curie

Coiling Spaghetti: thin elastic rods on a moving substrate

a loum

Laying down of cable/pipeline in the ocean bed

macroscopic experiments Pedro Reis (MIT)

[Geblinger Nature Nanotech 2008]

Coiling onto a Static Substrate with Pedro Reis (MIT)

 $V_{inj} = 5cm/s$ H = 30cm2mm silicon

Numerical Simulations

Stephen Morris (U.Toronto)

з

ana menanangan sekerentah dari kerenan dari kerenan berter berter berter berter berter berter berter berter ber

"Discrete Viscous Threads"

with Bergou, Audoly, Vouga, Wardetzky

Large radius & length
surface tension

Gravity vs. Surface Tension

A thread forms either a catenary (green circle) or U (purple square) as it falls, depending on its length L and diameter D. The boundary fits the law $LD = 4.7 a^2$, where a is the capillary length (determined by fitting to the data), in accordance with theory of Le Merrer et al. [2008].

"TRACKS," Miklos Bergou, with S. Mathur and M. Wardetzky

"TRACKS," Miklos Bergou, with S. Mathur and M. Wardetzky

TRACKS

•Guarantee output matches the input

output

input

Expressive materials

damped undamped

"Stable Fluids," Jos Stam, Autodesk

"Stable Fluids," Jos Stam, Autodesk

Control of Smoke

Adrien Treuille, Antoine McNamara, Zoran Popović, Jos Stam

Detail-Preserving Fluid Control

Instructional 2D-Example:

Comparison of Velocity Influence Resolution: 128^2 Controlparticles: 10

N. Thuerey, R. Keiser, M. Pauly, U. Ruede

Detail-Preserving Fluid Control

N. Thuerey, R. Keiser, M. Pauly, U. Ruede

