Modeling Deep Convective Zonal Flows on the Giant Planets

> Jonathan Aurnou UCLA Earth & Space Sciences aurnou@ucla.edu

Acknowledgements

- Moritz Heimpel
 - -University of Alberta
 - mheimpel@phys.ualberta.ca

- Johannes Wicht
 - Max Plank Institute for Aeronomy
 - wicht@linmpi.mpg.de

Today's Seminar

- <u>A new model of zonal flow dynamics on</u> <u>the Giant Planets</u>
 - 1. Observations
 - 2. Shallow Layer Models
 - **3. Deep Convection Models**
 - 4. Yano's Shallow Model
 - 5. Deep Jovian Convection Model
 - 6. Deep Convection Model for the Ice Giants

<u>1. Observations of The Giant</u> <u>**Planets**</u>

Jovian Zonal Wind Observations

• Jovian winds movie from Cassini:

Cassini Website

Jovian Zonal Wind Observations

• Polar winds movie from Cassini:

Vasavada

Jovian Wind Observations

- East-west velocities w/r/t **B**-field frame
- Powerful prograde equatorial jet
- Smaller wavelength higher latitude jets
- Fine scale jets near poles
- Net prograde winds

Giant Planet Atmospheres

• Deep atmospheric shell aspect ratios ($\chi = r_i/r_o$) – Jupiter: $\chi = 0.75 \sim 0.95$, Saturn: $\chi = 0.4 \sim 0.8$

Thermal Emission

- Jupiter and Saturn's thermal emission ~ twice solar insolation
- Neptune's ~ 3 times solar insolation
- Uranus is anomalous
 - Zonal winds could be due to either shallow
 or deep energy sources

Thermal Emission

- Jupiter and Saturn's thermal emission ~ twice solar insolation
- Neptune's ~ 3 times solar insolation
- Uranus is anomalous
 - Zonal winds could be due to either shallow
 or deep energy sources

Zonal Wind Models

- Shallow layer models
- Deep Convection models

Both models are able to generate aspects of the observed zonal winds

2. Shallow Layer Models

Shallow Layer Models

- Turbulent flow on a rotating spherical surface of radius *r*_o
- No convection
- Simulates dynamics of outer weather layer

Turbulence

- 3D Turbulence: Energy cascades from injection scale eddies down to dissipation scale eddies
- 2D Turbulence: "Inverse Cascade" of energy; eddies tend to grow to domain size

Potential Vorticity Conservation

In an inviscid shallow layer, potential vorticity (PV), q, is conserved.

$$\frac{dq}{dt} = \frac{d}{dt} \left(\frac{\xi + f}{h} \right) = 0$$

local vorticity $\vec{\xi} = \nabla \wedge \vec{u}$ planetary vorticity $\vec{f} = 2\Omega \sin\theta \hat{r}$ fluid layer depth

β - Plane Approximation

• Taylor expand planetary vorticity, f: $f(\theta) = 2\Omega \sin \theta$

$$\approx f_o + (\nabla f) y$$
$$= f_o + \beta y$$

• On a spherical surface $\beta = 2\Omega \cos \theta / r_o$

 $\Omega \hat{z}$

θ

 $\Omega sin\theta$

-v

Potential Vorticity Conservation

()

• For inviscid 2D flow on the β -plane:

$$\frac{d}{dt}\left(\frac{\xi+f}{h}\right) = \frac{d}{dt}\left(\frac{\xi+f_o+\beta y}{h}\right) = \left(\frac{\xi+\beta y}{h}\right) = const.$$
$$\left(\frac{U}{L}+\beta L\right) \sim const.$$

• For sufficiently large L :

$$U/L \sim \beta L \Rightarrow L \sim \sqrt{\frac{U}{\beta}}$$

local vorticity $\vec{\xi} = \nabla \wedge \vec{u}$ planetary vorticity $\vec{f} = 2\Omega \sin\theta \hat{k}$ fluid layer depth

Shallow Layer Rhines Length

- Rhines, *JFM*, 1975
- Rhines scale, L_R , where curvature effects truncate 2D inverse cascade:

- At L_R , turbulent eddies cease to grow
- Energy gets transferred into zonal motions
 - -Scale of zonal jets

<u>Shallow Layer</u> <u>Models</u>

- Shallow layer turbulence evolves into:
 - Large-scale zonal flows
 - <u>Alternating bands</u>
 - <u>Coherent vortices</u>

Shallow Layer Models

- Shallow layer turbulence evolves into:
 - Large-scale zonal flows
 - <u>Alternating bands</u>
 - <u>Coherent vortices</u>

Equatorial jets are westward

Cho & Polvani, Science, 1996

Shallow Layer Models

- 2D turbulence evolves into Rhines scale zonal jets
- Shallow layer β -effect
 - Potential vorticity increases towards poles
 - Gives retrograde equatorial jets

– Iacono et al., 1999; Vasavada & Showman, 2005

<u>3. Deep Models</u>

Deep Layer Models

- Busse, 1976
 - Deep spherical shell
 dynamics
 - Multiple jets require nested cylinders of convection columns
 - And even then...

Busse, Icarus, 1976

Rotating Spherical Shell Dynamics

- Geostrophic quasi-2D dynamics
 - Axial flow structures
- Tangent cylinder (TC) flow barrier

The Topographic β-effect

opposite the shallow layer case

The Topographic β-effect

- PV conservation on the topographic <u>β</u>-<u>plane</u>
- Induced local vorticity causes,
 eastward drift,

Equatorial plane, viewed from above

The Topographic β-effect

• PV conservation on <u>spherical boundary</u> causes latitudinallyvarying drift rate &tilted columns

Equatorial plane, viewed from abov

Reynolds Stresses

Equatorial plane, viewed from above

Quasi-laminar Deep Convection Models

QuickTime?and a YUV420 codec decompressor are needed to see this picture.

QuickTime?and a YUV420 codec decompressor are needed to see this picture.

North pole view of equatorial plane isotherms Outer boundary heat flux from 20°N lat

Aurnou & Olson, GRL, 2001

Shallow vs. Deep Model Comparison

- Shallow Layer:
 - Imposed turbulence on a spherical shell
 - Increasing PV with latitude
 - Retrograde equatorial jet
 - <u>Higher latitude</u>
 <u>Rhines scale jets</u>

- <u>Deep Convection:</u>
 - Quasi-laminar, QG convection
 - Decreasing PV with latitude
 - <u>Prograde</u> <u>equatorial jet</u>
 - No higher latitude alternating jets

Yano et al., Nature (2003)

- Yano et al., 2003
 - 2D shallow layer turbulence model
 - $-\underline{Chooses}$ a different function for β
 - <u>Full sphere</u> topographic β parameter

–Opposite sign as shallow layer β

- Simulates geostrophic turbulence in a sphere using the 2D shallow layer equations

- Prograde equatorial jet
- Broad Rhines scale high latitude jets

- Sign of β controls direction of equatorial jet
- Broad high latitude jets do not resemble Jovian observations

• Suggests that Rhines scale jets can form from quasigeostrophic (~2D) convective turbulence in a deep 3D model

4. New Deep Convection Model

Heimpel, Aurnou & Wicht, *Nature*, **438**: 193-196 (2005)

Spherical Shell Rhines Scale

(Scaling discontinuity across TC)

Spherical Shell Rhines Scale

- The Rhines scale is discontinuous across the tangent cylinder
- In thin shells:
 - The β_t parameter becomes larger inside the tangent cylinder
 - $-L_R$ becomes smaller

Geometric Scaling Function

Heimpel & Aurnou, 2006

Zonal Winds vs. Radius Ratio Tests

New Deep Convection Model

- Rapidly-rotating, turbulent convection
- Thin shell geometry ($\chi = 0.90$; 7000 km deep)

<u>χ=0.35 Rotating Convection Studies</u>

- Christensen, 2002
 - Zonal flow from fully-developed, quasigeostrophic turbulence
 - -Asymptotic regime

Christensen, JFM, 2002

New Deep Convection Model

- Solve Navier-Stokes equation
- Energy equation
- Boussinesq (incompressible) fluid

- Wicht's MagIC2 spectral transform code
 - Spherical harmonics in lat. & long.

– Difficulties in resolving flows near poles

- Chebyschev in radius

-Courant time-step using grid representation

New Deep Convection Model

- Input Parameters:
 - $-Ra = 1.67 \ge 10^{10}$
 - $-E = 3 \ge 10^{-6}$
 - -Pr = 0.1
 - $Ra^* = RaE^2/Pr = 0.15$

$$-r_i/r_o = \chi = 0.90$$

- Resolution
 - $-L_{\text{max}} = 512$, grid: ϕ 768, θ 192, r 65
 - Hyperdiffusion and 8-fold ϕ -symmetry

• Output Parameters:

$$-Re \sim 5 \ge 10^4$$

 $-Ro\sim 0.01$

Azimuthal Velocity

Temperature

The "Tuning" Question

- We have chosen
 - the radius ratio
 - The lowest Ekman number feasible
 - i.e., Fastest rotation rate
 - A Rayleigh number such that our <u>peak</u> Ro is similar to Jupiter's
 - Close to asymptotic regime of Christensen, 2002

3D Spherical Shell Rhines Scale

• "Regional" 3D shell Rhines scale

New Deep Convection Model

- Quasigeostrophic convective turbulence in a relatively thin spherical shell
- Generates **coexisting** prograde equatorial jets & alternating higher latitude jets
- Model (& Jovian observations) follows Rhines scaling for a 3D shell
 - Scaling **discontinuity** across the tangent cylinder
 - Smaller-scale jets inside tangent cylinder

Following Work 1

- Why do we need "regional" Rhines fits?
 - Expensive to test with full 3D models
 - 2D quasigeostrophic mechanical models
 - 2D quasigeostrophic convection models

Following Work 2

- How do we model high latitude fine scale jets?
 - Due to odd "plane layer" mode (Roberts, 1968)?
 - -Local models or non-SH global models

QuickTime?and a DV - NTSC decompressor are needed to see this picture.

Following Work 3

- Assumed zonal flow truncation at depth due to electromagnetic braking

 Simple 2D EM braking model
- Assumed Boussinesq fluid
 - How does compressibility change Boussinesq Rhines scaling?

5. Modeling Zonal Flows on the Ice Giants

Aurnou, Heimpel & Wicht, submitted to *Icarus* (2006)

Giant Planet Zonal Wind Profiles

Adapted from Sukoriansky et al., 2002

Angular Momentum in Deep Shells

Rotation >> Buoyancy

Shallow Layer Models

- Shallow layer turbulence naturally evolve to:
 - Large-scale zonal flows
 - <u>Retrograde equatorial jets</u>

Deep Convection Model ($\chi = 0.75$)

- a) Equatorial Jet vs. Ra*
 - Ra* = Buoyancy / Coriolis
- b) Axisym. poloidal KE fraction vs. Ra*

Deep Convection Model ($\chi = 0.75$)

• Retrograde jet case with $Ra^* = 1.5$ - $Ra = 1.5 \ge 10^{-5}$; Pr = 0.1

Deep Convection Model ($\chi = 0.75$)

Ice Giants Work

- Deep convection model for the Ice Giants
- Can deep models explain the thermal emissions of U vs. N?
 - Modeling
 - Subaru Observations

QuickTime?and a TIFF (Uncompressed) decompressor are needed to see this picture.

uestions?

