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Micromagnetic modeling of Bloch walls with Néel caps in magnetite

Song Xu! and David J. Dunlop
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Abstract. Two-dimensional micromagnetic modeling of 180°
domain walls in magnetite predicts that at depths >0.07 um below
the surface, the walls are Bloch-like, with spins rotating in the plane
of the wall in order to eliminate magnetic poles on the wall and
reduce demagnetizing energy, E;. The Bloch wall width is =0.16
um, in agreement with magnetic force microscope (MFM) data.
Near a crystal boundary, the walls are Néel-like: spins rotate in the
plane of the surface in order to eliminate surface poles. This Néel
cap is 0.3 pm wide and is offset with respect to the underlying
Bloch wall. The Néel cap is narrower and shallower in magnetite
(relative to Bloch wall width) than in iron, mainly because Ej is not
as overwhelmingly important compared to other energies in
magnetite as it is in iron. As a consequence of the smaller Néel cap
in magnetite, the surface field produced by a domain wall is due
mainly to the underlying Bloch wall, with only a minor contribution
from the Néel cap. This prediction is consistent with MFM imaging
of domain walls on free surfaces of magnetite crystals.

Bloch and Néel Walls

Classical domain theory predicts magnetic domain walls of two
basic types, Bloch and Néel (Landau and Lifschitz, 1935; Néel,
1944, 1956). In a 180° Bloch wall separating antiparallel domains,
the M vector rotates through 180° in the plane of the wall and no
magnetic poles appear on or within the wall (Figure 1b). However,
poles do appear where the Bloch wall intersects the crystal surface.
For the most favourable viewing of domain structures in magnetite,
the crystal is cut and polished parallel to {110} which contains two
sets of <111> magnetocrystalline easy axes (Ozdemir et al., 1995).
The density of surface poles on the {110} viewing surface at the
termination of a Bloch wall is Mg, where i is the surface normal.

These surface poles generate a demagnetizing energy, E;. The
surface poles can be eliminated if My rotates in the plane of the
surface rather than in the plane of the wall (Figure la). Such a
structure is called a Néel wall, and is typical of thin films with a
large surface/volume ratio. Although Néel walls eliminate poles on
the crystal surface, they generate volume poles within the wall with
a density V-Mj (= aMSylay if y is the direction perpendicular to the
wall). These poles are of opposite sign in the two halves of the wall.

The Néel-wall volume poles create a demagnetizing energy E;
which is greater than E; of the Bloch-wall surface poles if the Néel
wall extends to any great depth in the crystal. Using the results of
Lilley (1950), we have calculated energies per unit area for Bloch
and Néel walls parallel to (110) in bulk magnetite. The results are
normalized to (A]K1|)'/’, where A is exchange constant and K is
first-order magnetocrystalline anisotropy constant. If only the
exchange energy E, and magnetocrystalline anisotropy energy E, are
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considered, the energies are 1.88 for Bloch walls and 1.83 for Néel
walls. When demagnetizing energy E; is included, the Bloch-wall
energy is unchanged (since surface effects are ignored in the bulk
calculation) but the Neel-wall energy increases to 13.4.

Thus except in thin films, we would expect walls to be a hybrid
of Bloch and Néel types, with the Bloch structure dominant in the
crystal interior and the Néel structure appearing close to the surface
(e.g., LaBonte, 1969). The expected near-surface structure is often
called a Néel cap because it should extend only to a shallow depth
in the crystal (e.g., Scheinfein et al., 1991).

Magnetic Force Microscope Profiles

With the magnetic force microscope or MFM, it is now possible
to measure directly the magnetic fields created by Néel and Bloch
walls in nanoscale traverses over the crystal surface. The MFM
typically responds to the second derivative of vertical field, d2Hz/dz2
(Williams et al., 1992; Proksch et al., 1994). Using the results of
Sharma (1966) for the magnetic field H produced by a uniformly
magnetized rectangular body, we have calculated profiles expected
over walls with purely Néel and Bloch structure, respectively (Figure
2). Sharma's results are easily extended to infinite rectangular rods,
which are the modeling elements in our micromagnetic calculations
below.

The Néel wall has an antisymmetric profile in Figure 2, because
the volume pole density is positive in one half of the wall and
negative in the other half (Figure la). The Bloch wall has a
symmetric profile, because surface poles of a single sign appear at
the surface intersection of the wall (Figure 1b). For the best
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Figure 1. Rotation of the M vector across (a) a Néel wall or (b) a
Bloch wall between antiparallel domains. Positive and negative
magnetic poles are denoted by + and - signs.
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Figure 2. Surface profiles of dsz/dz2 over Néel and Bloch walls. The distance above the surface is h.

resolution of wall width and structure, the scan height h should
ideally be <0.5w. Resolution is much poorer when h>w.

Micromagnetic Model

We have carried out 2-dimensional micromagnetic modeling to
determine the exact structures and surface field profiles of 180°
walls in magnetite. In similar modeling for iron, Scheinfein et al.
(1991) found an offset Néel cap wider than the Bloch wall below.
Taking these results as a guide, we concentrated our modeling
elements within 5-10 wall widths below the free surface and on
either side of the expected Bloch wall center. We assumed that at
depth in the crystal, the wall has ideal Bloch structure and that at
many wall widths, the domains have uniform M (see Figure 3).

The modeling region was 1.2 pm wide and 0.8 pm deep, and was
divided into 120 by 80 cells. Each cell measured 10 nm x 10 nm,
~1/10th of the expected Bloch wall width, w. In the micromagnetic
calculation, the orientations of the My vectors of the 120 x 80 cells
were varied iteratively until the sum of the exchange energy, E,, the
crystalline anisotropy energy, E,, and the demagnetizing energy, E;,
was minimized. Expressions for E;, E, and E; and details of the
minimization procedure are given by Xu et al. (1994). Efficient
methods of evaluating E are essential in micromagnetic calculations
(Yuan and Bertram, 1992; Berkov et al., 1993; Fabian et al., 1996).

Micromagnetic
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Figure 3. The array of cells used in micromagnetic modeling
relative to the domains and underlying Bloch wall. My is fixed in
the two domains; M in the Bloch wall region varies according to
eqn. (1).

Our formulation is an outgrowth of the work of Newell et al. (1993).
Calculations were carried out using a KSR1 parallel-processor
computer.

The initial structure from which the iteration started, which was
also the boundary condition at depth, was a 1-dimensional Bloch
wall:

M, (y) = M tanh[y/(A/| K, 4],  M,(y) = M sech[y/(A/|K{)"2. (1)

The material constants used were M= 480 kA/m, K= -12.5 KJ/m?
and A=1.32 x 10711 J/m. The M vectors in domains 1 and 2 were
in[111] and [i1 1] crystalline easy directions, respectively, and the
top viewing surface was 1_10). Thus the Cartesian axes in Figure
3 relative to_the crystallographic axes are x: [111]; y (normal to the
wall): [_1 1 2]; z (normal to the viewing surface): {110].

Calculated Structures

The calculated structure of a 180° wall in the y-z plane is shown
in Figure 4. The x-y surface, on which domains would be viewed
and MFM profiles measured, is seen edge on at the top. Each arrow
plotted is the projection of the M vector on the y-z plane and
represents an average of the M directions in four adjacent cells.

Within the domains, the Mg vector is perpendicular to the plane
of the page, as indicated by a small dot marking the head or tail of
each vector and the ®, © symbols. At depth, the wall is Bloch-like,
with M rotating in the plane of the wall. In the middle of the Bloch
wall, M is nearly parallel to -z and thus appears full scale in the
figure. To either side, M has a component into or out of the page,
and so its in-page component (the arrow plotted) is reduced.

The Bloch wall is about 16 cell widths or 160 nm (0.16 pum)
wide. This estimate of w is in fair agreement with the conventional
width given by domain theory (e.g., Kittel, 1949), which is
~m(A/|K,| )" = 100 nm or 0.1 um for magnetite.

Within the top 70 nm (about one-half of w) below the free
surface, the spins turn over to be surface-parallel. As in iron
(Scheinfein et al., 1991), the Néel cap in magnetite is wider than the
Bloch wall below and is quite strongly offset to one side.

The offset facilitates flux linkage with the underlying Bloch wall.
The offset Néel cap forms part of an extended flux loop, completed
by the left part of the Bloch wall at depth and a return or "ascending
arm" of similar width to the left of the Bloch wall. The M vectors
in the return column are basically perpendicular to the page but have
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Horizontal scale = 0.6 micron
Vertical scale = 0.7 micron
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Figure 4. A cross-section through part of the modeled region,
showing the fine structure of the 180° wall: a Néel cap at the free
surface (top), a Bloch wall at depth, and a return flux column of
similar width to the Bloch wall located to the left of the wall. Each
arrow represents the component of M in the y-z plane of section,
averaged over 4 adjacent cells (only 1 cell in 4 is shown). Vectors
into and out of the page are denoted by &, ©.

a small upward component. Similarly the M vectors in the Bloch
wall are basically in the plane of the wall but have a small compo-
nent to the left. Although the Néel cap is surficial and represents a
concentration of flux, the rest of the flux loop is distributed over a
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much greater depth range, and is actually most obvious near the
bottom of the modeled region.

Simulated MFM Profiles

Profiles representing MFM response, i.e., vertical gradient of the
magnetic force between the magnetized tip of the MFM cantilever
and the field H due to the magnetization structure of the modeled
"sample" below, were calculated by the same method as in Figure 2,
except that the width of the MFM tip and its magnetization direction
(assumed vertical) were convolved with the ideal (zero tip width)
response. Tip widths no greater than the scan height gave acceptable
detail in the response curves (Figure 5).

Although the Néel cap eliminates Bloch-wall surface poles, the
dominant signal in the simulated MFM profiles over the top surface
is symmetric and must be due to the underlying Bloch wall. Even
though the Bloch wall does not extend to the surface and produce
poles, it generates a surface field with large gradients. There is also
an antisymmetric and offset signal due to the Néel cap, but it is only
really obvious with a narrow MFM tip scanning close to the surface.

The half-widths of the d2HZ/dz2 surface profiles are reasonable
estimates of the Bloch wall width, w, for tip widths of 0 and 50 nm
(5 cell widths). Too broad a tip results in a complex peak shape
from which it is difficult to estimate w. The Néel cap position and
width are fairly well determined by using the minima in each profile.
Again, too wide a tip degrades the signal so that the Néel cap
parameters become difficult to estimate.

Discussion

The cross-sectional structure we have calculated for a 180° wall
in magnetite is similar in general aspect to the corresponding
structure predicted for iron (Scheinfein et al., 1991). However, the
Néel cap is less strongly developed in magnetite. It extends to a
depth of =0.5w, compared to a depth of =w in iron. Another
difference is that spins at depth in the Bloch wall deflect slightly out
of the wall plane to form a distributed flux return path within the
crystal volume.

In iron, the Néel cap extends deeper and M vectors at depth are
confined strictly to the Bloch wall plane, so that the flux must close
by a loop extending across the crystal to a Néel cap on the opposite
face. These differences are accounted for by the greater importance

100nm from the surface

80 T T T
tip width=0

_40 L L il
-0.50 -0.25 0.00 0.25

0.50

Horizontal distance, y (micron)

Figure 5. Simulated MFM profiles over the modeled 180° wall, for different MFM tip widths and scan heights
(y= 0 corresponds to the center of the Bloch wall at depth). The almost symmetric central peak is due to the
underlying Bloch wall. The asymmetry and offset of the flanking negative peaks are due to the Néel cap.
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Figure 6. MFM data (circles) measured across a 180° wall in

magnetite and the best-fit profile using a simple model (after
Proksch et al., 1994). The experimental profile is very similar to our
model profile (Figure 5) for similar MFM parameters (the profiles
are inverted with respect to each other).

in iron of E; compared to other energies. For example, E{/E,
Msle1 and is thus (1710/480)2/(48/ 12.5) = 3.3 times larger in iron
than in magnetite. The avoidance of poles at the crystal surface (the
cause of Néel caps) and on the Bloch wall-domain interface (the
cause of in-plane rotation of spins in a Bloch wall) is less imperative
in magnetite than in iron. Of course, walls have other ways of
reducing E,; which are not taken into account in micromagnetic
modeling. One way is through subdivision by Bloch lines into zig-
zag segments of alternating magnetic polarity or chirality. Walls
should be more finely segmented in iron than in magnetite
(Shtrikman and Treves, 1960), and this is observed experimentally
(Williams et al., 1992; Proksch et al., 1994).

The first MFM images of domain walls in magnetite were
reported by Williams et al. (1992) for a polished {110} surface of a
5-mm natural single crystal. Using a scanning height of 150 nm,
symmetric profiles with a single force maximum were obtained
across a 180° wall between lamellar domains. The favoured
interpretation of the profiles was a zig-zag Bloch wall with surface
poles of opposite sign on alternate segments. An asymmetric Bloch
wall with an offset Néel cap was not ruled out, but the allowable
depth of the Néel cap was only 20 nm, much less than the 70 nm our
model predicts.

Proksch et al. (1994) also reported MFM images of domain wall
structure on a {110} polished surface of a magnetite single crystal.
Their experimental and fitted profiles are reproduced in Figure 6.
They used a tip width of 30 nm and a scan height of 110 nm. The
surface intersection of the wall was shown to be parallel to <111>,
ruling out zig-zag walls.

The measured profile is noticeably asymmetric and (apart from
being inverted) is very similar to our predicted profile for a similar
tip width and height (Figure 5). In fact, our micromagnetic predic-
tion gives a significantly better fit to Proksch et al.'s data than their
theoretical model, in which the Bloch wall was represented by a line
of poles 160 nm below the crystal surface and the Néel wall by an
offset line of surface dipoles.

The half-width of Proksch et al.'s profile is 210 + 40 nm. Our
predicted half-width for a 50 nm tip 100 nm above the surface is
=160 nm (Figure 5), which is also the Bloch wall width w predicted
in Figure 4. The agreement is reasonable.

Conclusions

1. Near the crystal surface, domain walls are Néel-like: the spins
rotate in the plane of the surface.

2. The Néel cap is shallow, approximately one-half the Bloch wall
width or 0.07 um for 180° walls in magnetite.

3. The Néel cap is offset 0.1-0.2 pm with respect to the underlying
Bloch wall for 180° walls.

4. As first predicted by LaBonte (1969), the Néel cap forms part of
a flux closure loop. However, unlike the situation in films of iron
(Scheinfein et al., 1991) and permalloy (Humphrey and Redjdal,
1994), the flux loop closes within the crystal volume and not by
linking to another Néel cap on the opposite face.

5. Surface field profiles should be affected by both the volume and
the offset of the Néel cap. For MFM tip widths <50 nm and scan
heights <100 nm, the Bloch wall width is well represented by the
half-width of the central peak. The Néel cap width and offset can
be determined from the spacing and position of the two flanking
peaks of opposite sign.

6. Our predictions about Bloch-wall widths and Néel-cap widths
and offsets are in reasonable agreement with MFM measurements
on magnetite by Proksch et al. (1994). They agree less well with
profiles measured by Williams et al. (1992).
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