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Abstract. We present an improved micromagnetic model for predicting the
minimum energy magnetization states in fine magnetite grains. The resolution, or
the number of elemental magnetization vectors, has been increased over previous
models: first, by the use of a Fourier transform algorithm to reduce the number
of calculations from O(N?) to O(N logN) (N being the number of elements into
which the grain is subdivided); and second, by implementing the model on a parallel
computer. Using a parallel computer reduces the computation time by a factor
of approximately 1/(4N,), where N, represents the number of processors. The
improved model enables equilibrium magnetization states to be predicted using
a resolution of 64 x 64 x 64 subcubes to a grain in 16 hours of CPU time; this
compares with a resolution of 12 x 12 x 12 in 24 hours of CPU time for previous
models. High-resolution models allow the examination of multidomain states in
materials such as magnetite and different sized grains or assemblages of interacting

grains.

Introduction

Recent developments in micromagnetic modeling have
shown that magnetization states in magnetite grains
above a critical size are nonuniform inhomogenous struc-
tures which require three-dimensional (3-D) models One
of the important aspects of such models, which this
study considers, is the resolution of the model or the
number of elements which the grain is divided into.
Micromagnetic models, such as the one shown in Fig-
ure la, model a cubic grain by dividing it into a num-
ber of elemental subcubes and assign a magnetic vector
to the center of each subcube. Iterative minimization
techniques are used to produce either a stable global-
energy-minimum state or more generally a metastable
local-energy-minimum (LEM) state. Previous mod-
els which have not used restrictive assumptions have
been limited to using resolutions of not greater than
12 x 12 x 12 [Williams and Dunlop, 1990], and higher-
resolution results are required in order to confirm their
predictions. In addition, higher-resolution models are
required in order to determine the transition to con-
ventional multidomain type states in larger grains. At-
tempts to increase the resolution have included using
a two-dimensional model and truncating the interac-
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tion range [Dunlop, 1990], or imposing symmetry rela-
tions [Williams and Dunlop, 1989]. These models are
likely to be inaccurate or to produce constrained so-
lutions. This paper describes an improved micromag-
netic algorithm which takes advantage of recent devel-
opments in parallel computing in order to predict new
metastable domain states for magnetite (T.M. Wright
and W. Williams, High-resolution micromagnetic anal-
ysis of pseudo-single-domain magnetic grains, submit-
ted to Journal of Geophysical Research, 1996).

Recently, Fabian et al. [1996] independently devel-
oped a 3-D micromagnetic algorithm using a fast fourier
transform (FF'T) to produce a highly efficient code ca-
pable of relatively large resolutions of up to 33,327 in-
teracting elements. However, their model assumes that
the neighboring interacting elements must lie immedi-
ately adjacent and cannot be separated from each other.
This essentially constrains their algorithm to modeling
magnetic domain configurations of single grains. The
method suggested here allows an arbitrary distance to
separate neighboring elements and thus enables the be-
havior of magnetostatically interacting arrays of single-
domain (SD) and pseudo-single-domain grains to be
studied. Using parallel processing implemented on a
Connection machine, a resolution of nearly 8 times (up
to 64 x 64 x 64 elements) that achieved by Fabian et al.
can be obtained. In this way realistic geometries of in-
teracting grains can be modeled and compared directly
to recent experimental studies [King et al., 1996].

The magnetization configuration in a real grain is as-
sumed to occupy metastable equilibrium states, and ide-
ally, these should be obtained in a manner which closely
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Figure 1. (a) A cubic crystal of edge length d is mod-
elled by subdividing a cube into N = n® sub-cubes each
of edge length A. In the above diagramn = 4. (b) Each
elementary magnetization vector is defined by the az-
imuthal angle (¢) and the colatitudinal angle (6).

resembles the physical process of the acquisition of a
thermoremanent magnetization. That is, minimum en-
ergy states should be calculated by using a relaxation
method stimulated by thermal fluctuations. Techniques
such as simulated annealing attempt to mimic such pro-
cesses and have proven very useful in a number of prob-
lems [Kirkpartick et al., 1983]. Simulated annealing es-
sentially consists of a random walk downbhill, or occa-
sionally uphill, if allowed by a probability based on a
defined “temperature”, equivalent to a thermal fluctu-
ation. Simulated annealing methods have been used in
micromagnetic calculation [Thomson et al., 1994], but
because of the random nature of the steps taken, the
computational costs are very high. Because of the high
computational requirements, the use of simulated an-
nealing has been restricted to modeling low-resolution
structures at small grain sizes.

The conjugate gradient (CG) method is a very pow-
erful technique which is suited for large-scale mini-
mization problems [Powell, 1977]. This is a first-order
method, which for perfectly quadratic equations con-
verges in N(N + 1) line minimizations, where N is the
number of variables. Its advantages are that, although
it does not require calculating and storing the Hessian,
which may exceed the memory capacity of the com-
puter, it still has a good convergence rate. The conver-
gence rate is higher than simple steepest descent meth-
ods due to the use of a more sophisticated set of “non-
interfering” search directions. If the storage of the Hes-
sian is possible then a second-order method, such as a
quasi-Newton (QN) method, should converge faster and
have the advantage of avoiding false convergence due to
inflection points in the objective function. However, as
is often the case in large-scale problems, the Hessian
can be so ill conditioned that the convergence rate is
much slower than the CG method, even when damping
of the Hessian is introduced. A comparison between
CG and QN methods showed that, as expected, the ex-
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tra CPU time required to compute the Hessian in the
QN method was not compensated for by a sufficiently
large increase in the convergence rate. The second-order
method is still useful in confirming that true LEM states
have been attained.

The magnetostatic energy calculation E¢is the most
computationally expensive calculation as the interac-
tion of each magnetization vector with every other vec-
tor needs to be considered. This makes the problem
a so-called N body problem, requiring O(N?) calcula-
tions, where IV is the total number of cubic elements
into which the grain is subdivided (Figure 1a). To
model the magnetostatic energy interaction efficiently,
ideally, each processor in a parallel computer would
be connected to every other processor. However, in
practice, parallel computers are normally constructed
so that each processor is connected to only a few other
processors. This means that E¢ cannot be directly con-
verted from a direct pairwise summation to a paral-
lel, simultaneous sum, requiring O(N) calculations. N
body problems are ubiquitous in science and a technique
often used is a FFT method. This method increases the
efficiency of the model: first, by reducing the number of
calculations from O(N?) to O(NN log N); and second, by
enabling £ to be implemented on a parallel computer.

This technique was first applied by Giles et al. [1990],
who calculated E¢ by using a two-dimensional FFT
routine with periodic boundary conditions. A similar
method was developed by Yuan and Bertram [1992] on
low-resolution, two-dimensional magnetic systems with
nonperiodic or nonmagnetic boundary conditions. Non-
periodic boundary conditions are important in mod-
elling natural magnetic minerals with a finite size, and
this paper describes an improved algorithm which in-
creases the efficiency of the magnetostatic calculation
by using a general 3-D FF'T algorithm with nonperiodic
boundary conditions. In addition, this paper describes
how the accuracy of the exchange calculation can be
improved by using a second-order expansion.

Description of Model

As the micromagnetic method has been described in
detail by Brown [1978], only the extensions necessary
for the three-dimensional formulation will be described.
The essence of the micromagnetic approach is that it
takes a semiclassical view of the physics of magnetism.
That is, we do not want to describe the magnetization
on the quantum mechanical level, but we need to de-
scribe it in sufficient detail to enable the magnetic struc-
tures to be accurately determined. The magnetization
at any point within the material is averaged over many
hundreds of unpaired electron spins and is taken to be
a continuous function of position. The magnetization
of each subcube is then modeled by a magnetic vec-
tor placed at its center and whose direction represents
the direction of the average magnetization within that
cubic element. The magnetization intensity of the sub-
cube vectors is assumed to be constant and only their
direction may alter in order to reduce the grain’s to-
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tal magnetic energy. The magnetic energy is evaluated
in terms of the interactions between the magnetization
vectors themselves and between the magnetization and
the crystalline structure. Although the model described
here has cubic elements, the methodology is completely
general and valid for any cuboid subelement. Figure 1
shows the cubic system used. The edge length of the
grain is denoted by d, and the cube is subdivided into
N = n® subcubes, each of edge length A (A = d/n). In
the center of each subcube is an elementary magnetic
vector M; of constant magnitude M whose direction
represents the average direction of all the atomic mag-
netic vectors within that subcube.

The magnetic energy is the sum of the magnetostatic
E®, the exchange E€, the anisotropy E® and the exter-
nal field energies E®. For each energy term, except for
the exchange energy, the Cartesian coordinates of the
subcube in the 3-D coordinate system will be abbrevi-
ated from ijk to the single subscript I. The direction of
M, varies with the azimuth ¢ and the colatitude 8 and
has direction cosines a, 3,y given by

M o cos(¢) sin(8;)
m=—=| 8 | =] sin(¢)sin(4) (1)
M; Y cos(9;)

The algorithm was implemented on a 16000 processor,
TMC Connection Machine CM-200 data parallel com-
puter which associates a few data elements with each
processor [Hillis, 1985]. In the specific example of mi-
cromagnetism, each data element corresponds to the
azimuthal and colatitude of each elementary vector, as
shown in Figure 1.

Discretization of the Energy Terms

For each energy term, integration over the volume of
the grain is approximated by a sum over the subcubes
in which a continuous function f(6, ¢) is replaced by a
discrete function fi,

:///f(&,q&)dxdydz%zl:fﬁ,

where 7 = A% is the volume of each subcube and the
sum is over each of the three dimensions.

(2)

Exchange Energy

Using the approximation that the angle between atomic
spins is small, Brown [1978] obtained the following ex-

~
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pression for the exchange energy E€,

= /Vm 2dV—C Y (Vmy)?AS (3)

i,k

A first-order approximation would be to assume that
the magnetization varies linearly between subcubes.
Using m - m = 1, and considering the ¢ direction,

(m(i+1)jk - mijk)2

(Vmy)® A2

(Vmyjp,)? (4)

~7 (L= Mijk M ie)
giving

n-ln—-1ln—1

= AC, Z Z Z(l — Mijk - M(i41)jk),

i=1 j=1 k=1

(5)

plus similar expressions for the j and k directions. A
more accurate approximation would be to start from
equation (3) and use Green’s formula,

E¢ = Ce / (Vm)?dV
B = -=e </m V2mdv+/Vm@ds>
E¢ = —_ABZmz]k v? mgj g (6)

2,5,k

where the second term vanishes due to the boundary
condition Odm/On = 0 at the grain surface.

A five point difference scheme in one dimension is
given by

0%f _
ox?

1 —fico +16fi—1 — 30f; + 1611 — fiyo
12 A? ’
(7)

so in three dimensions, equation (6) becomes

3 n n
ge_ _CA

)

i=1 j=1k=1

where V2 is the five point difference (equation (7)) ex-
tended to three dimensions.

To ensure that the boundary condition, dm/dn = 0,
is satisfied (in this case n is the outward normal to
the grain boundary) the magnetization needs to be re-
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Figure 2. A one-dimensional system with n = 5 showing how the boundary conditions are
satisfied for the five point exchange formulation. A similar scheme is used for the linear exchange
formulation but only the sub-cube nearest the boundary is reflected.
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flected at the boundary. Figure 2 shows that for a one-
dimensional (1-D) system using the tive-point exchange
formulation the vectors need to be copied from the two
subcubes nearest the surface. This is purely a math-
ematical device and does not imply that any type of
periodic boundary conditions have been imposed.

The two formulations were compared using the arbi-
trary array of magnetization vectors shown in the 1-D
domain wall of Figure 2. The vectors are described by
the colatitude 6, which varies with the distance z, and
the azimuthal angle ¢ which is kept equal to zero. The
spins on the outer edges are approximately 7/2 radians
apart and the intermediate spins are described by a bal-
ance between an exchange energy term and a uniaxial
anisotropy energy [Chikazumi and Charap, 1964].

6 = 2tan~1(10%) (9)
Figure 3 shows how the exchange energy depends on
the resolution. Both formulations converge to the same
value, but the five-point formulation converges at a
lower resolution and is thus more accurate. Figure 4
shows how the exchange energy depends on the angle
between two spins (i.e., Figure 2 with a resolution of
n = 2). The spin at = 0 is kept fixed, and the neigh-
boring spin varied from 8 = 0° to § = 360°. The need
to reflect both boundaries to a depth of two subcubes
allows the five-point exchange formulation to be com-
pared with the linear exchange at a resolution of n = 2.
The five-point formulation results in higher values of
E¢ for all angles of 8. Although the same value of the
exchange constant was used for both formulations, the
five-point formulation effectively produces a stiffer ex-
change interaction between the spins. This means that
the five-point formulation is less likely to produce mag-
netization states in which neighboring spins have large
angles between them. Thus although the five-point ex-
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Figure 3. Dependence of the exchange energy (E¢) on
the resolution n, solid curve, linear formulation; dashed
curve, five point formulation.
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Figure 4. Dependence of the exchange energy (E°)
on the angle 8 between two spins: solid curve, linear
formulation; dashed curve, five point formulation.

change formulation is in general more accurate than the
liner approximation, it is important to realize that sig-
nificant errors may still be present. For example, vor-
tex domain structures may be more difficult to nucle-
ate since neighboring spins near the vortex center are
separated by large angles and a stiffer exchange may
penalize this. The CPU time required to calculate the
exchange energy is much less than that required for the
demagnetizing energy, so the choice of exchange formu-
lation has no significant impact on the efficiency of the
micromagnetic algorithm.

Anisotropy Energy

The cubic anisotropy is approximated by using the
first anisotropy constant K; and is a local term inde-
pendent of the resolution.

Ee = % (1— (m)*)AS.
l

(10)

For magnetite and nickel, K is negative. The easy
(111) and intermediate (110) directions are low-energy
directions, whereas the hard (100) directions are high
energy directions. The convention used in this study
will be that E* =0 for a SD state aligned along one of
the (100) hard directions, and E® < 0 for a SD state
aligned in one of the {111) or (110) easy directions.

External Field Energy

Applying an external field H to the model with mag-
nitude H and direction 8y and ¢y gives as an expres-
sion for E",

EM = —po Y " MH - myA, (11)
l
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Magnetostatic Energy

This section describes how the FFT technique can
be extended to calculate the magnetostatic energy for
three-dimensional systems. Using Maxwell’s equations
for the field H' due to each elementary magnetic vector,

41rJ

VxH = (12)
and assuming that the current den31ty J equals zero, we
can define a scalar potential ® such that H' = -V ®.
For a ferromagnet with volume V5 and surface S,, the
potential at a point ry due to a magnetostatic charge at
ry can be calculated using Green’s functions [Jackson,

1975]

_ 1 V- M(I‘Q)
(I)(rl) - 4T v |I‘1 —I‘2l

Mra) 224,
|y — 1o
(13)

The model described in this study assumes that the
magnetization within each subcube is of constant direc-
tion and magnitude (V- M = 0). Equation (13) then
reduces to solely the second term, and the calculation
becomes a sum over charged plates. Two methods for
splitting a cubic system into charged plates have pre-
viously been used: (1) Berkov et al. [1993] used an
algorithm in which the fundamental unit is a charged
plate and the calculation is a sum over each charged
plate. In this case the charge on each plate is a func-
tion of the difference in the magnetization directions in
the neighboring subcubes, so that the subcubes cannot
be separated; and (2) Williams and Dunlop [1989] con-
sidered the fundamental unit to be a pair of charged
subcubes and the calculation to be a sum over each
subcube. Both schemes were implemented using a con-
ventional N? serial algorithm and were found to be
identical in terms of the accuracy and the number of
calculations required (the difference in E? between the
two schemes was less than 1077%). However, using the
subcube as the fundamental unit means that it is easy
to modify the distance between subcubes from zero to
some arbitrary distance. This therefore provides a more
flexible algorithm and allows the investigation of grain
interactions, where each subcube represents a complete
SD grain, or group of subcubes can represent a simple
pseudo-single-domain grain. In addition, by varying the

L

l
Figure 5. Magnetostatic interaction between two orthogonal plates.
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dimension of the model from three dimensional to two
dimensional, interactions between SD grains either as
in thin films or a 3-D assemblage could be studied.

By using the divergence theorem, [i,V - FdV/
JsF -ndS, and denoting o; as the charge density on
plate |, (o =m-n, ¢ € {a,03,7}), the energy per unit
volume between the two plates shown in Figure 5 be-
comes

Il

— o /M(rl) -HdV = ,LLO/M(I'l) -VodV

B = 1 [V (@M(m) -8V M) dv

/J/()MS
Sy

0,9dS;. (14)

The potential ® at I due to the plate at position m is
given by the second term in (13), so Efl,, becomes

2
Bl = “"M / / I 19,4
S }rl-rm|
Bf, = ’ﬁﬂ Win0 o, (15)

where W;_,, is calculated using the method of Rhodes
and Rowlands [1954]. For example, for the two orthogo-
nal plates shown in Figure 5, with (y;,2) and (2, 2m)
the set of points inside the charged plates o; and o,
respectively, then W;_,, is given by

A pA A Ay
Wi = / / / |3 dudzndendz,
o Jo Jo Jo T

where r is the distance between (y;,2) and (zp, zm)-
Wi_m forms a demagnetizing tensor similar to that re-
ported by Newell et al. [1993]. The appendix describes
the evaluation of the integral in (16). Figure 6 shows
the four interactions which make up W8, The energy
between the a plates at cube | and the 3 plates at cube
m for the whole system is given by

gt = tolle o S Wb

where ¢; and 8, are the charge densities (o) on the
plates. All summations are assumed to be from 1 to n

(16)

(17)

m
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Figure 6. The four interactions required for each configuration of charged plates. W is the

sum of each of the four interactions shown.

in each of the three dimensions. A factor of a half has
been introduced in order to cancel the effect of counting
combinations of plates twice during the full double sum-
mation. The total energy is the sum of each interaction
between «, 3, and v plates including the self energy of
each subcube.

Fast Fourier Transform Method

Equation (17) requires O(N?) calculations but by
rewriting in terms of a convolution and calculating in
frequency space, the number of calculations can be re-
duced to O(N log N). Absolute time savings made us-
ing the FFT method compared with the normal N? cal-
culation will be dependent on the CPU type and FFT
algorithm. However, since the FFT method incurs a sig-
nificant extra bookkeeping overhead, overall CPU time
savings will not be made for models of resolutions less
than 7 x 7 x 7.

The energy between the surface charges o; and o, is
given by

d inM ZZWI mT0m-

Using & to represent the discrete Fourier transform co-
efficients of 0,0 <= &,

(18)

= —]1\7 Z 61, exp[—2mikl /N (19)
k
Om = —]}V— Z 1 exp[—2mik'm/N)] (20)
k/
1 = .
Wiem = ; Wi exp[—2mik" (I —m)/N].  (21)
Equation (18) now becomes
Bo TS S
exp[—2mi[l(k + k") + m(k' — k")]/N](22)

and using the definition of a delta function,

N
"no_ —2ri(k+k") /N _ 1 k+k"=0
(23)
B = 87rN Zzzakaw w0k + k)oK —E").
k' k!
(24)

The first delta function has a value of 1 only when k" =
—k and the second when k' = k"' = —k. Therefore

Ei= P N6 Wy,
k

8N (25)

and as the array W is an even function, then W is real
and it follows that Wy=W_,, giving

Fi—
87rN Zakff kWi (26)

The expression for the complete magnetostatic energy
calculated in frequency space is given by

Ed — NOMS2

N (i Wy) -y, (27)
where W, is the tensor
) 1 Waa %I{f/aﬂ % Wa'y
W, = 1 Wﬂ" %WW’ L I/V[”7 (28)
1 W'ra %W'rﬁ i W'w

As WP = Wh> and W is real, the number of calcula-
tions can be reduced by writing

. 1 _ . L
~ af | ~ Ba __ ~ ap
Ek apB_ W +5 Ek Bra_p WP = Ek B W,
(29)

N | =
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Figure 7. Arrangement of the interaction coefficients
(W) and the array of charges (o) for a one-dimensional
model with N = 8. In this example W is an even func-
tion, W at ¢ = 0 represents the self-energy of the sub-
cube, W at ¢« = —N is equal to zero.

and the modified tensor W now becomes

%Waa Waﬁ Wa’y
W, = 0 Lyyse W;ﬁv (30)
0 0 lwm

Implementing Nonperiodic Boundaries

The convolution theorem assumes that the surface
charges (o) are periodic in each of the three directions
whereas real magnetite grains have a finite size with
non-magnetic or free-air boundaries. Figure 7 shows
how the interaction array W and the charges (o) have to
be arranged for a one dimensional system with N = 8 in
order to satisfy nonperiodic boundary conditions. For
both W and o, arrays have to be allocated in which
each dimension is twice as large as the resolution of the
model. For example, a 3-D model with a resolution of
32 % 32 x 32 subcubes requires arrays of size 64 x 64 x 64
to be allocated. The additional values of the charges o
are set to zero in order to model free-air boundary con-
ditions [Press et al., 1986]. The additional values of the
array W between i = —1 and ¢ = — N represent the in-
teraction when the subcube m (shown in Figure 5) is to
the left of subcube [. A similar method is implemented
in the two other dimensions for the 3-D model.

Conclusion

By using fast Fourier transforms to calculate the mag-
netostatic energy, we have developed the most efficient
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micromagnetic algorithm to date, and using individual
subcubes as the discrete element results in the most gen-
eral algorithm. In addition to modeling cubic grains, a
high-resolution cubic system is a general model which
can be used as a starting point from which to model
arbitrarily shaped grains. With high resolutions, up to
64 x 64 x 64, the computation time on a parallel com-
puter is sufficiently fast to allow metastable equilibrium
states to be calculated using iterative optimization tech-
niques. At lower resolutions, the computation time is
reduced sufficiently, compared to previous algorithms,
to make the use of the FFT algorithm worthwhile.

For example, using aresolution of 32x 32x32, a single
energy calculation on the Connection Machine CM-200
takes 0.68 s, which compares to 32,768 s on a Stardent
GS1000 serial machine. Taking into account the fact
that the GS1000is a four-processor vector machine and
the CM-200 a N, = 16,000 processor parallel machine,
the computation time for the CM-200 model is faster
by approximately 1/(4Np).

Appendix: Interaction Coeflicients

Much computer time can be saved by resolving each
dipole into its equivalent magnetostatic surface charges
and evaluating the interaction between these charged
sheets in the manner of Rhodes and Rowlands [1954].
In this way the angular and spatial components of the
interactions can be separated and the invariant spatial
components evaluated once and stored in a look-up ta-
ble. The angular component simply represents the vary-
ing magnetostatic charges on the surface as the direc-
tion of each elementary vector changes.

If we represent the magnetostatic charges on a pair
of interacting sheets in the zy plane as oy and o9, then
the interaction energy E,, is given by

A pA
Em = 0’2/ / V(.’l)g,yz, Zg)d:rgdyz, (31)
0 0

where V(z4,y2,22) is the magnetic potential at the
point (z2,¥s,22) on the second sheet, due to the mag-
netic charge of the first. Thus

V(z2’ y2522) = 01 IOA dzl fOA ((zZ - $1)2

+y2 —y1)* + 222)—1/2dy1, (32)

where A is the edge length of the sheets.

For one-dimensional models, only interactions be-
tween parallel sheets need be evaluated; however, for
three-dimensional models, both parallel and orthogonal
interactions must be calculated. Care must be taken
when evaluating the integral to ensure that the lim-
its are of the same sign. The case of interacting par-
allel sheets has been described by Rhodes and Row-
lands [1954] and can be described in terms of a function
Flz,y,z).
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2F(z,y,2) = 2%z sinh™! (y2 m z2) + 4%z sinh(z /y)
2, -l Z
hi(—2
+z°z sin (m2+y2)

+y%x sinh™! (2 /y)
(22 + 42 + 22)1/2y
Tz

+2yz tan_l(
2
+§y2(x2+y2+zz)—1/2
1 _ 2 .
+§x2(x2+y2) 1/2—§y2(x2+y2)1/2
1 _ 2 .
+§z2(y2+z2) 1/2_§yz(y2+22)1/2
__.Z‘_)+g 3
v+22 37

z
:1:2+y2)

—y2z sinh ™ (

—y?z sinh ™! ( — TTYZ

1 . . .
—S(:r2 + 2 (2® + 2 + zz)_l/2 (33)

for interaction between pairs of x — y planes. For inter-
acting orthogonal planes the integral to be evaluated is
similar to (32) except that for an zy plane interacting
with an zz plane the integration in (31) is now over
2 and z. The result can be represented in terms of a
function G(z,y, 2):

1
G(z,y,2) = wyz+In(r+az)+ izgy In(r + 2)

1, 1

Za2y1 2.3 2,2
+5e7z n(r+y)+12y In(z* +y*)
1, 1

2 3 In(z? 4 #2) — 2,3
+157 n(z® + z%) 57 In(r +y)

1 N 1
+6Z3 In((z* +y*)"/2 +y) - éys In(y)

1
+6y3 In((22 + 9?2 +2) - %rzy

l 3 —1(rz 1, -1 /Ty
+5@° tan (yz)+ 5  tan (_xz)

1 1 ;
+§z2:1: tan™! (%Z—) + gzy(y2 + 22172

1
—5TYz In(y? + 2%)

1 . 1
—Z$2y In(z? + y?) — Z:ﬁz In(z? + 2%

1
- gy3 In(r + z)

1 1 . .
—623 In(z) — me(xz +3y” + 32%)(34)

where r = (22 4 y? + 22)1/2. The functions needed for
interactions between other pairs of orthogonal sheets
can be obtained by symmetry.

The convolution theorem requires the interaction be-
tween the subcube at position i =1, j = 1, k =1
and each of the other subcubes. The interaction coeffi-
cients, in terms of the function G, between the subcube
at coordinates (¢ = 1,5 = 1,k = 1) and a subcube at
coordinates 1A =a, jA = b, kA = c is given by

Wh = 2G(A+a,b,2A+c)+ G(A +a,b,c)
+G(a,b,A+¢)+G(2A +a,b,A+¢)
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+4G(A +a,A+b, A+ ¢)
+G(a, A +b,2A+ ¢)+ G(a, A +b,¢)
+G(2A +a,A+b,2A+¢)
+G(2A +a,A+D,¢)
+G(A+a,2A +b,2A + ¢
GA+a,2A+b,¢)+ G(a,2A + b, A + ¢)
+G(2A +a,2A+ b,A + ¢
—4G(A +a,b,A+ ¢)+ G(a, b,2A +¢)
+G(a,b,¢)+ G(2A +a, b,2A +¢)
+G(2A +a,b,¢)
+4[G(A +a, A+ b,2A +¢)
+G(A 4+ a,A +b,¢)+G(a,A +b, A +¢)
+G(2A +a,A+b,A+ ¢)
+G(A+a,2A +b, A+ ¢)]
+G(a,2A 4+ b,2A + ¢) + G(a, 2A + b, c)
+G(2A +a,2A+ b,2A +¢)
+G(2A +4a,2A+ b,¢) (35)
where a, b and ¢ are in units of A. From symmetry,

+

W e, f,y) = WH(B,0,7) (36)
Rhodes and Rowlands [1954]
Wl a, B,7) =Wy, B,0). (37)

The coefficient W#7 is given by

WP = 2[(FQA+a,A+ b2A +¢)

+F(2A +a,A+b,c)

+4F(A +a, A+ b, A+ ¢)

+F(a, A+b,2A+ ¢)+ Fla, A+ b,c)

+F(2A +a,b,A + ¢

+F(A +a,b,2A + ¢)

+F(A +a,b,c)+ Fla, b, A + ¢

F(2A +a,2A+ b,A +¢)

(
(

+

+F(A+a,2A4+b,2A +¢)

+F(A+a,2A+b,¢)

+F(a,2A + b,A + ¢)]

—-4[F(2A+a,A+ b,A +¢)

+F(A+a,A+b,2A+ ¢)

+F(A+a,A+b,¢)+ Fla,A +b, A+ c)]

~F(2A +a,b,2A +¢) — F(2A + a,b,¢)

—4F(A +a,b,A+ ¢)+ Fla,b,2A +¢)

—F(a,b,¢) — F2A +a,2A + b,2A +¢)

+F(2A +a,2A + b,c)

—4F(A +a,2A+ b,A +¢)

+F(a,2A + b,2A + ¢)

+F(a,2A + b, c) (38)

Because the limits of integration of (31) and (32) have

to be split differently depending on the relative posi-

tions of the interacting sheets, the following conditions
have to be taken into consideration:
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1. When i # 1,5 # 1Lk =1, web = Whr =,
WeT = W7 and Wee = Wge, W = WoP , w =
Wi, ‘

2. Wheni' =1,j' #1,k' #1, W8 = W**8 WhY =
Wer =0 and Wee = Wg*, WPP = WiP, W =
W’Y’Y

3 When i’ #1,j = 1,k # 1, W8 = W% =0,
W07 = W*BY and Wee = Wae, Wh8 = WPP wr =

W

4. When i # 1,5/ = LK = 1, W = WhY =
We7 = 0 and Wee = Wgo, WP8 = Wil wrr =
Wy

5. When i/ = 1,5’ = 1L,k # 1, Wof = w5y

Il

Wer = 0 and Wee = Wee, WA = WiP, W =
Wy

6. When i/ = 1,5/ # L,k' = 1, W = Wh7 =
Wer = 0 and Woo = Wge, Wh8 = wiP, wrr =
wy.

The coefficient W*#7 is given by

WP = 4[G(A,2A +b,A+c) +G(A,B,A+c)
+G(A, A +b,7) +G(A, A +b,2A +¢)]
—2[4G(AA +b,A+¢) +G(A,2A+b,7)

+G(A,B,7) +G(A,2A +b,2A + ¢)

+G (A, B,2A + ¢)] (39)
and from symmetry
W (a, B,7) = W(8,7,0) (40)
W% (a, B,7) = W (y, 8,a). (41)
The coefficient W17P is given by
WP = 4(2F(A,A+b,A) = F(A,b, A)
—F(A,2A +b,A)) (42)
and from symmetry
Wi (o ) = WiP(8,7, ) (43)
W1 (a,8,7) = W17 (8,0,7). (44)
The coefficient W2 is given by
WP = 4[F(2A+4a,0,A) - 2F(A +a,0,A)
+F(a,0,A) — F(2A +a,4A,A)
+2F(A +a,A,A) — F(a,A,A)]  (45)
and from symmetry
Way (@, 8,7) = Wy (1,8,0) (46)
W3 (@, 8,7) = Wiy (8,0,7) (47)

12,093

Wz‘ra’Y:WMﬁﬂ W;a W%,Bﬂ W‘Y“f Woa al (48)

The coefficient W5”? is given by

Wy’ = 2(F2A +a,0,2A +¢)
—2F(2A+ a,0,A +¢) +2F(A+ a,0,c)

—2F(A +a,0,2A +¢)
+4F(A +a,0,A +¢)

—2F(A +a, 0,c) + F(a,0,2A + ¢)
—2F(a,0,A +¢) + F(a,0,c))
—2(F(2A+ a,A, 2A+ ¢)

—2F2A+ a,AA +¢) +F(2A+ a, A, ¢)
—2F(A +a, A2A +o)

+4F(A +a, AA +¢)

—2F(A +a,Ac) +F(a, A, 2A + ¢)

—2F(a, A, A +¢) + F(a, A, c)) (49)
and from symmetry
W3 (o, B,7) = Ws”%(a, 7, ) (50)
W™ (o, B,7) = Ws%%(8, o, ). (51)
The coefficient W27 is given by
WPP = 2(F2A +a, A+ b,2A +c)

+FQA 4a,A+b, )

+4F(A +a, A +b, A+ ¢)

+F (a0, A +b,20+ ¢)+ Fla, A+ b,7y)
+F2A +a,8,A + )

+F(A+ a,B,2A + ¢)

+F(A+a,B,v)+ Fla, B,A +¢)
FF(A 40,284 b, A+ ¢)

+F(A+ a,2A +b,2A+ ¢)

+F(A+ a,2A +b,7)
+F(a,2A 4+ b, A+ ¢)]

—4[FQ2A +a, A+ b,A+¢)

+F(A+ a,A +b,2A+¢)

+F(A+a,A +b,v) +F(a,A +b,A+c)
~F(2A +a,B,20 +¢) — F(2A +a, 3,7)
—4F (A +a,B8,A+ c)+ Fla, B,2A +¢)
~F(a,B,7) — FA +a,2A + b,2A +¢)
+F(2A +a,2A +b,9)

~4F (A 4+ a,2A +b,A+ ¢)
+F(a,2A 4+ b,2A + ¢)

+F(a,2A + b, 7) (52)

and from symmetry
Wi (@, 8,7) = WaP (a,y, ) (53)
Wi (. 8,7) = Wi"? (v,, B). (54)

The coefficient Wfa6 is given by



2(F(2A +a,A+b,A)

—4F (A +a,A+b,A) +2F(a,A +b,A)
-F(2A +a,b,A) +2F(A+ a,b, A)
—F(a,b,¢c) — F(2A +a,2A +b,A)
+2F(A +a,2A + b, A)

~F(a,2A + b,¢)) (55)

and from symmetry
Wi (a, B,7) = Wsa”? (8, @,7) (56)
Wi (o, 8,7) = Wsa” (v, B,0) (57)
W (@, 8,7) = Wsa"? (8,7, ) (58)
ng(a,ﬁ, 7) = W5aﬁﬁ(aa Y, ﬂ) (59)
W (a, B,7) = Wsa™? (7,0, ). (60)
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