PHY131H1S - Class 17
 Today:

- Rotational Motion, Rotational Kinematics (some review of Ch.4)
- Newton's $2^{\text {nd }}$ Law of Rotation
- Torque
- Moment of Inertia
- Centre of Mass

Pre-class reading quiz on Chapter 12

Moment of inertia is

A. the rotational equivalent of mass.
B. the point at which all forces appear to act.
C. the time at which inertia occurs.
D. an alternative term for moment arm.

Linear acceleration =
force / mass:

$$
a_{x}=\frac{\left(F_{n e t}\right)_{x}}{m}
$$

Angular acceleration = torque / moment of inertia:

$\alpha=\frac{\tau_{\text {net }}}{I}$

Last day I asked at the end of class:
Why is a door easier to open when the handle is far from the hinge, and more difficult to open when the handle is in the middle?

- ANSWER:
- Torque is the rotational analog of force:
- Force causes things to accelerate along a line.
- Torque causes things to have angular acceleration.
- Torque $=$ Force \times Moment Arm
- Moment Arm is the distance between where you apply the force and the hinge or pivot point.
- Putting the handle further from the hinge increases your moment arm, therefore it increases your torque for the same applied force: the door rotates better.

Linear / Rotational Analogy	
Linear	Rotational Analogy
- x	- θ
- v_{x}	- ω
- a_{x}	- α
- Force: F_{x}	- Torque: τ
$\text { - Mass: } m$	- Moment of Inertia:

Newton's Second Law:
$a_{x}=\frac{\left(F_{n e t}\right)_{x}}{m} \quad \alpha=\frac{\tau_{\text {net }}}{I}$

Example

- The engine in a small airplane is specified to have a torque of 60.0 N m . This engine drives a propeller whose moment of inertia is $13.3 \mathrm{~kg} \mathrm{~m}^{2}$. On start-up, how long does it take the propeller to reach 200 rpm ?

Torque

Consider the common experience of pushing open a door. Shown is a top view of a door hinged on the left. Four pushing forces are shown, all of equal strength. F_{1} is most effective at opening the door.

The ability of a force to cause a rotation depends on three factors:

1. the magnitude F of the force.
2. the distance r from the point of application to the pivot.
3. the angle at which the force is applied.

Torque

Consider the common experience of pushing open a door. Shown is a top view of a door hinged on the left. Four pushing forces are shown, all of equal strength. Which of these will be most effective at opening the door?

\vec{F} exerts a torque | Angle ϕ is measured |
| :--- |
| about the pivot point. |
| cow from the radial line. |

$\tau=r \boldsymbol{T} \sin \phi$

Consider a body made of N particles, each of mass m_{i}, where $i=1$ to N. Each particle is located a distance r_{i} from the axis of rotation. We define moment of inertia:

$$
I=m_{1} r_{1}^{2}+m_{2} r_{2}^{2}+m_{3} r_{3}^{2}+\cdots=\sum_{i} m_{i} r_{i}^{2}
$$

The units of moment of inertia are $\mathrm{kg} \mathrm{m}^{2}$. An object's moment of inertia depends on the axis of rotation.
The moment of inertia

$$
I=\sum_{i} m_{i} r_{i}^{2}=\int r^{2} d m
$$

is the rotational equivalent of mass. The moment of inertia depends on how the mass is distributed around the axis. If I_{cm} is known, the I about a parallel axis distance d away is given by the parallel-axis theorem: $I=I_{\mathrm{cm}}+M d^{2}$.

Center of Mass

The center of mass is the mass-weighted center of the object.

$$
x_{\mathrm{cm}}=\frac{1}{M} \int x d m \quad \text { and } \quad y_{\mathrm{cm}}=\frac{1}{M} \int y d m
$$

Rotation About the Center of Mass

- An unconstrained object (i.e., one not on an axle or a The object rotates about pivot) on which there is no net force rotates about a point called the center of mass
- The center of mass remains motionless while every other point in the object undergoes circular motion around it

- Suppose you know the moment of inertia of an object when it rotates about axis its centre of mass: I_{cm}
- You can find the moment of inertia when it is rotating about any other axis which is a distance d away from the cm :

$$
I=I_{\mathrm{cm}}+M d^{2}
$$

Four Ts are made from two identical rods of equal mass and length. Rank in order, from largest to smallest, the moments of inertia I_{a} to I_{d} for rotation about the dotted line.

(a)

(b)

(c)

(d)
A. $I_{\mathrm{a}}>I_{\mathrm{d}}>I_{\mathrm{b}}>I_{\mathrm{c}}$
B. $I_{\mathrm{c}}=I_{\mathrm{d}}>I_{\mathrm{a}}=I_{\mathrm{b}}$
C. $I_{\mathrm{a}}=I_{\mathrm{b}}>I_{\mathrm{c}}=I_{\mathrm{d}}$
D. $I_{\mathrm{a}}>I_{\mathrm{b}}>I_{\mathrm{d}}>I_{\mathrm{c}}$
E. $I_{\mathrm{c}}>I_{\mathrm{b}}>I_{\mathrm{d}}>I_{\mathrm{a}}$

Before Class 18 on Wednesday

- Please read up to and including section 12.7 of Knight Chapter 12
- Something to think about:
- In Practicals this week you will hold the string of a yo-yo fixed as you drop it. As the yo-yo falls, the string unwinds and the yo-yo rotates. Does it fall faster or slower than $9.8 \mathrm{~m} / \mathrm{s}^{2}$?
- The transformation of energy is $U_{g} \rightarrow$ kinetic; so why does it fall slower?

