PHY131H1S - Class 19 Today:

- Angular Velocity Vector
- Angular Momentum
- Review of chapters 5 to 12
- Test 2 tomorrow at $8 p m$ on chapters 5 though 12, including what is discussed in class today

Static Equilibrium Problems

- In equilibrium, an object has no net force and no net torque.
- Draw an extended free-body diagram that shows where each force acts on the object.
- Set up x and y axes, and choose a rotation axis. All of these choices should be done to simplify your calculations.
- Each force has an x and y component and a torque.

Sum all of these up.

- Three equations which you can use are:

$$
\sum F_{x}=0 \quad \sum F_{y}=0 \quad \sum \tau=0
$$

Ch. 12 reading quiz:

- If a figure skater pulls in her arms while rotating, what happens to her angular speed ω ?
A. ω decreases
B. ω increases
C. ω stays the same

Static Equilibrium Question, choose:
$\sum F_{x}=$
0
:---
forces have zero x-component.

Choose pivot point $=$ support 1

$\sum \tau=0$ means $m g(L / 2-d)+F_{2} d=0 \Longrightarrow F_{2}=-\frac{m g(L / 2-d)}{d}$
So F_{2} must be negative, or down.
$\sum F_{y}=0$ means $F_{1}+F_{2}-m g=0 \Longrightarrow F_{1}=m g-F_{2}$
So F_{1} must be positive, or up.

The Angular Velocity Vector
Using your right hand, 2. Your thumb is

with your thumb
then pointing in
the direction of $\vec{\omega}$

- The magnitude of the angular velocity vector is ω.
- The angular velocity vector points along the axis of rotation in the direction given by the right-hand rule as illustrated above.

- $\vec{s}, \vec{v}, \vec{a}$
- θ, ω, α
- Force: \vec{F}
- Moment of Inertia:

Newton's
$2^{\text {nd }}$ law:
$\vec{a}=\frac{\vec{F}_{n e t}}{m}$
$\alpha=\frac{\tau_{\text {net }}}{I}$
Kinetic
energy:
$\vec{L}=I \vec{\omega}$

The Law of Conservation of Momentum

- If there is no net external force on a system, then its momentum is a constant.

The Law of Conservation of Energy

- If there is no work or heat being exchanged with a system and its surroundings, then its energy is constant.

The Law of Conservation of Angular Momentum

- If there is no net external torque on a system, then its angular momentum is a constant.

1 Newton's First Law

The natural state of an object with no net external force on it is to either remain at rest or continue to move in a straight line with a constant velocity.

3 Newton's Third Law

If object 1 acts on object 2 with a force, then object 2 acts on object 1 with an equal force in the opposite direction.

Two buckets spin around in
a horizontal circle on frictionless bearings.
Suddenly, it starts to rain.
As a result,
A. The buckets speed up because the potential energy of the rain is transformed into kinetic energy.
B. The buckets continue to rotate at constant angular velocity because the rain is falling vertically while the buckets move in a horizontal plane.
C.The buckets slow down because the angular momentum of the bucket + rain system is conserved.
D.The buckets continue to rotate at constant angular velocity because the total mechanical energy of the bucket + rain system is conserved.
E. None of the above.

2 Newton's Second Law

The acceleration of an object is directly proportional to the net force acting on it, and inversely proportional to its mass.

$$
\vec{a}=\frac{\vec{F}_{\mathrm{net}}}{m}
$$

4 Newton's Universal Law of Gravitation

Two particles of mass m_{1} and m_{2}, a distance r apart, will experience an attractive force:

$$
F_{1 \text { on } 2}=F_{2 \text { on } 1}=\frac{G m_{1} m_{2}}{r^{2}}
$$

where $G=6.67 \times 10^{-11} \mathrm{Nm}^{2} \mathrm{~kg}^{-2}$. Near the surface of the Earth, the dominant source of gravity is from the Earth itself. On an object of mass, m, this force is:

$$
\begin{aligned}
& \vec{F}_{\mathrm{G}}=(m g, \text { straight down }) \\
& \text { where } g=9.80 \mathrm{~N} \mathrm{~kg}^{-1}
\end{aligned}
$$

Consider a basketball in freefall.
Action: Earth pulls down on ball
Reaction: ball pulls up on Earth, with equal force. But the acceleration is not equal.

$a=\frac{F_{\text {net }}}{m}$

Fictitious Forces

- WARNING: Newton's Laws only apply in a "inertial reference frames". They are not valid if your reference frame is accelerating!
- An inertial reference frame is one that is not accelerating.
- If you are in a reference frame that is accelerating at $+a$, your own inertia will cause you to accelerate relative to this frame at $-a$. If you try to use Newton's laws in this accelerating frame, you must add a fictitious force of $-m a$ to each object of mass m in the frame.
- Centrifugal force is an example of a fictitious force.
- The equivalence principle states that the force of gravity is similar to a fictitious force; being in this gravitational field is equivalent to accelerating upward at $+9.8 \mathrm{~m} / \mathrm{s}^{2}$.

Static Friction

- There's a limit to how $\operatorname{big} f_{\mathrm{s}}$ can get. If you push hard enough, the object slips and starts to move. In other words, the static friction force has a maximum possible size $f_{\text {s max }}$.
- The two surfaces don't slip against each other as long as $f_{\mathrm{s}} \leq f_{\mathrm{s} \text { max }}$.
- A static friction force $f_{\mathrm{s}}>f_{\mathrm{s} \text { max }}$ is not physically possible. Many experiments have shown the following approximate relation usually holds:

$$
f_{\mathrm{s} \text { max }}=\mu_{\mathrm{s}} n
$$

where n is the magnitude of the normal force, and the proportionality constant μ_{s} is called the "coefficient of static friction".

Static Friction

FIGURE 6.11 Static friction keeps an
object from slipping.

Example: The box is in static equilibrium, so the static friction must exactly balance the pushing force:

$$
f_{\mathrm{s}}=F_{\mathrm{push}}
$$

This is not a general, "allpurpose" equation. It is found from looking at the free body diagram and applying horizontal equilibrium, since $a_{x}=0$.

A box of mass 100 kg is in the back of a truck. The truck is accelerating to the right at $3.0 \mathrm{~m} / \mathrm{s}^{2}$. The box does not slide. The coefficient of static friction between the box and the floor of the truck is $\mu_{\mathrm{s}}=1.0$. What is the magnitude of the force of static friction on the box?
A. Equal to 980 N
B. Equal to 300 N
C. less or equal to 980 N
D. less or equal to 300 N
E. not enough information to determine

- Test 2 tomorrow evening at 8:00pm on Chs. 5-12 - Don't forget: calculator, aid sheet and T-card										
$\begin{gathered} \text { Mon } \\ 1: 00 \\ 3: 00 \end{gathered}$			$\begin{gathered} \text { Tue } \\ 10: 00 \\ 1: 00 \\ 3: 00 \end{gathered}$		Group	Room	$\begin{aligned} & \text { Wed } \\ & 1: 00 \end{aligned}$		Group	Room
	Group	Room			T1A	EX 200			W2A	EX 310
	M2A	EX 100			T1B	EX 200			W2B	EX 200
	M2B	EX 320			T2A	EX 200		3:006:00	W3A	EX 200
	M3A	EX 320			T2B	EX 100			W3B	EX 200
	M3B	EX 320			T3A	EX 200			W4A	EX 100
					T3B	EX 200			W4B	EX 200
	Thu 10:00 12:00 2:00		Group	Roo	$\begin{gathered} \text { Fri } \\ 10: 00 \\ 12: 00 \\ 2: 00 \end{gathered}$		Group	Room		
			R1A	EX			F1A	EX		
			R2A	EX			F1B	EX		
			R2B	EX			F2A	EX		
			R3A	EX			F3A	EX		
			R3B	EX			F3B	EX		

