PHY131H1S - Class 19 Today:

- Angular Velocity Vector
- Angular Momentum
- Review of chapters 5 to 12
- Test 2 tomorrow at 8pm on chapters 5 though 12, including what is discussed in class today

- If a figure skater pulls in her arms while rotating, what happens to her angular speed ω?
- A. ω decreases
- B. ω increases
- C. ω stays the same

Static Equilibrium Problems

- In equilibrium, an object has no net force and no net torque.
- Draw an extended free-body diagram that shows where each force acts on the object.
- Set up *x* and *y* axes, and choose a rotation axis. All of these choices should be done to simplify your calculations.
- Each force has an *x* and *y* component and a torque. Sum all of these up.
- Three equations which you can use are:

 $\sum F_x = 0$ $\sum F_y = 0$ $\sum \tau = 0$

The Law of Conservation of Momentum

 If there is no net external force on a system, then its momentum is a constant.

The Law of Conservation of Energy

 If there is no work or heat being exchanged with a system and its surroundings, then its energy is constant.

The Law of Conservation of Angular Momentum

 If there is no net external torque on a system, then its angular momentum is a constant.

2

Newton's Second Law

The acceleration of an object is directly proportional to the net force acting on it, and inversely proportional to its mass.

4 Newton's Universal Law of Gravitation Two particles of mass m_1 and m_2 , a distance rapart, will experience an attractive force: $F_{1 \text{ on } 2} = F_{2 \text{ on } 1} = \frac{Gm_1m_2}{r^2}$ where $G = 6.67 \times 10^{-11} \text{ Nm}^2 \text{ kg}^{-2}$. Near the surface of the Earth, the dominant source of gravity is from the Earth itself. On an object of mass, m, this force is: $\vec{F}_G = (mg, \text{ straight down})$

where $g = 9.80 \text{ N kg}^{-1}$.

- Consider a basketball in freefall.
- Action: Earth pulls down on ball
- **Reaction:** ball pulls up on Earth, with equal force. But the acceleration is not equal.

Fictitious Forces

- WARNING: Newton's Laws only apply in a "inertial reference frames". They are not valid if your reference frame is accelerating!
- An inertial reference frame is one that is not accelerating.
- If you are in a reference frame that is accelerating at +a, your own inertia will cause you to accelerate relative to this frame at -a. If you try to use Newton's laws in this accelerating frame, you must add a fictitious force of -ma to each object of mass m in the frame.
- Centrifugal force is an example of a fictitious force.
- The equivalence principle states that the force of gravity is similar to a fictitious force; being in this gravitational field is *equivalent* to accelerating upward at +9.8 m/s².

de against f the to the ion force. ww the e relation:

Example: The box is in static equilibrium, so the static friction must exactly balance the pushing force:

$$f_{\rm s} = F_{\rm push}$$

This is not a general, "allpurpose" equation. It is found from looking at the free body diagram and applying horizontal equilibrium, since $a_x = 0$.

Static Friction

• There's a limit to how big f_s can get. If you push hard enough, the object slips and starts to move. In other words, the static friction force has a *maximum* possible size $f_{s \text{ max}}$.

• The two surfaces don't slip against each other as long as $f_s \leq f_{s \text{ max}}$.

• A static friction force $f_s > f_{s \text{ max}}$ is not physically possible. Many experiments have shown the following approximate relation usually holds:

 $f_{\rm smax} = \mu_{\rm s} n$

where *n* is the magnitude of the normal force, and the proportionality constant μ_s is called the "coefficient of static friction".

- A box of mass 100 kg is in the back of a truck. The truck is accelerating to the right at 3.0 m/s². The box does not slide. The coefficient of static friction between the box and the floor of the truck is $\mu_s = 1.0$. What is the magnitude of the force of static friction on the box?
 - A. Equal to 980 N
 - B. Equal to 300 N
 - C. less or equal to 980 N
 - D. less or equal to 300 N
 - E. not enough information to determine

					Group	Roo	m		Group	Room
	Group	Roon	 1. 1999 1999 1. 1999 1999 	Tue	T1A	EX 2	00	Wed	W2A	EX 31
on	M2A	EX 10	0 10:0	10-	T1B	EX 2	1:00-		W2B	EX 200
00-	M2B	EX 32	0	1:00-		EX 2	00		W3A	EX 200
00-	МЗА	EX 32	0	10-1	T2B EX 1		00	3:00-	W3B	EX 200
	МЗВ	EX 32	0	n Ī	ТЗА	EX 2	00	c.00	W4A	EX 10
			— 3.0	-00	тзв	EX 200	00	6:00-	W4B	EX 20
		Fhu 10:00	Group R1A	Ro EX	200	Fri	Grou F1A		110.0	
		10:00 Г			200 10	Fri):00-		EX 1	00	
		10000	R1A	EX	200 200 10	Г	F1A	EX 1	00	
	1	10:00 Г	R1A R2A	EX EX	200 200 100 310):00-{	F1A F1B	EX 1 EX 1 EX 1	00 00 00	