

The Final Exam

- The final exam will be Dec. 15 2-4pm.

- The room depends on the first letters of your last name: A-CAR in EX310, CAS-FR in EX200, FU-O in EX200 and P-Z in EX100.
- If you have a time conflict you must contact the Examinations Office in SS1006
- As with your term tests, allowed aids include a calculator and one double-sided hand-written aid sheet prepared by you
- The 2 hour exam is comprehensive covering all aspects of the course evenly from Sep. 12 to Dec. 7. Mainly it is chapters 1-15 of Knight (with some exclusions) and Error Analysis.

Period, frequency, angular frequency

- For any kind of oscillation, the time to complete one full cycle, and return to the same condition, is called the period, T.
- The frequency, f, is the number of cycles per second.

Frequency and period are related by:

$$
f=\frac{1}{T} \quad \text { or } \quad T=\frac{1}{f}
$$

- The frequency f is measured in cycles per second, or Hertz.
- We may also define an angular frequency ω in radians per second, to describe the oscillation:

$$
\omega(\text { in } \mathrm{rad} / \mathrm{s})=\frac{2 \pi}{T}=2 \pi f(\text { in } \mathrm{Hz})
$$

A little pre-class reading quiz on Ch. 14
A mass on a spring forms an oscillator. Which of the following quantities in the description of simple harmonic motion is not determined by the initial position and velocity of the mass?
A. the amplitude, A
B. the phase constant, ϕ_{0}
C. the angular frequency, ω

Combine to form a differential equation:

$$
a=\frac{d^{2} x}{d t^{2}}=-\frac{k}{m} x
$$

Simple Harmonic Motion with a Phase Constant

- If the initial position of an object in S.H.M. is not A, then we may still use the cosine function by introducing a phase constant ϕ_{0} measured in radians.
- In this case, the primary kinematic equations of S.H.M. are:

$$
\begin{array}{ll}
x=A \cos \left(\omega t+\phi_{0}\right) & x_{\max }=A \\
v_{x}=-v_{\max } \sin \left(\omega t+\phi_{0}\right) & v_{\max }=A \omega \\
a_{x}=-a_{\max } \cos \left(\omega t+\phi_{0}\right) & a_{\max }=A \omega^{2}
\end{array}
$$

Mass on a Spring: Summary of solution

$$
\text { Acceleration depends on } x: a=\frac{d^{2} x}{d t^{2}}=-\frac{k}{m} x
$$

"Trial Solution" for x (guess): $x=A \cos (\omega t)$
where A and ω are constants.

$$
\text { Velocity is } d x / d t: v=A[-\sin (\omega t)] \omega=-A \omega \sin (\omega t)
$$

Acceleration is $d v / d t: a=-A \omega \cos (\omega t) \omega=-A \omega^{2} \cos (\omega t)$
This is just $a=-\omega^{2} x$, which
is our original equation for

$$
\begin{aligned}
& \text { nal equation for } \\
& \text { acceleration if: } \omega^{2}=\frac{k}{m}
\end{aligned}
$$

A is arbitrary: in practice it is set by initial conditions.

A. Velocity is positive; force is zero.
B. Velocity is negative; force is zero.
C. Velocity is negative; force is to the right.
D. Velocity is zero; force is to the right.
E. Velocity is zero; force is to the left.

S.H.M. notes.

- The frequency, f, is set by the properties of the system. In the case of a mass m attached to a spring of spring-constant k, the frequency is always

$$
f=\frac{1}{2 \pi} \sqrt{\frac{k}{m}}
$$

- A and ϕ_{0} are set by the initial conditions: x_{0} (initial position) and v_{0} (initial velocity).
- A turns out to be related to the total energy of the spring oscillator system: $E=1 / 2 k A^{2}$.

A mass is oscillating on a spring in S.H.M. When it passes through its equilibrium point, an external "kick" suddenly decreases its speed, but then it continues to oscillate. As a result of this slowing, the frequency of the oscillation
A. goes up
B. goes down
C. stays the same

Before Class 21 on Monday

- Please finish reading Knight Chapter 14
- Something to think about: A mass hanging from a string is swinging back and forth with a period of 2 seconds.
- What is the period if the mass is doubled?
- What is the period if the length of the string is doubled?

