

A little pre-class reading quiz...
Which of the following is closest to the density of the air in this room, in
S.I. Units, $\mathrm{kg} / \mathrm{m}^{3}$?
A. 10^{-5}
B. 0.01
C. 0.1
D. 1
E. 1000

A little pre-class reading quiz..

Which of the following is closest to the density of water in S.I. Units, $\mathrm{kg} / \mathrm{m}^{3}$?
A. 10^{-5}
B. 0.01
C. 0.1
D. 1
E. 1000

Announcements

- Test 2 has been marked and will be returned to you this week in Practicals. After adjustment, the average was the same as for Test 1: 65\%.
- Look over the marking. If there are any issues that need to be addresses, such as a marking error, the deadline for reporting this to April Seeley in MP129 is Dec. 8 by 5:00pm
- Course evaluations are happening this week in Practicals. This is your chance to officially and anonymously let the world (and my boss!) know how we are doing.
- NOTE: There is class on Wednesday December 7 - it is our last class; I will be finishing up Ch. 15, doing a little review, and Professor Jones has a few words of wisdom for you about PHY132

Resonance: When a periodic driving force matches the natural oscillation frequency of a system

Resonance: When a periodic driving force matches the natural oscillation frequency of a system

On Nov. 7, 1940 the Tacoma Narrows Bridge in Washington State collapsed. It had been known to oscillate in the wind at about 0.2 Hz , and was nicknamed "Galloping Gertie". Aeroelastic fluttering caused the wind to become a periodic driving force.

Last day I asked at the end of class:

- If you stand on a waterproof bathroom scale in a wading pool, so that part of your legs are immersed in the water, will your measured weight be different than normal?
- ANSWER:
- Yes! Your weight will be less.
- That is because the water exerts an upward buoyancy force on the part of your legs that is immersed.
Archimedes' Principle states that your weight will be less by the weight of the amount of water that your legs displace.

Definition: Density

The ratio of a fluid's or object's mass to its volume is called the mass density, or sometimes simply "the density."

$$
\rho=\frac{m}{V} \quad \text { (mass density) }
$$

The SI units of mass density are $\mathrm{kg} / \mathrm{m}^{3}$.
The density of water is $1.00 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$.

Your body is composed of about 60% water.

Is gauge pressure larger, smaller, or equal to true pressure?
A. Larger
B. Smaller
C. equal to

Harlow uses a toilet plunger to pull a large wooden podium.
The maximum pulling force that Harlow can exert on the podium in this way
A. is determined by Harlow's strength.
B. is determined by the strength of the door.
C. equals $P_{\text {atm }} A$, where $A=$ area of the suction cup
D. equals $m g$, where $m=$ mass of the podium
E. equals $\mu_{\mathrm{s}}(m g)$, where μ_{s} is the coefficient of static friction between the cup and the podium

Pressure and "Suction"

What is the force of air pressure on the top of your outstretched hand?

Atmospheric Pressure:

$$
\left(1.013 \times 10^{5} \frac{\mathrm{~N}}{\mathrm{~m}^{2}}\right)\left[\frac{0.0254 \mathrm{~m}}{1 \text { inch }}\right]^{2}\left[\frac{2.2 \text { pounds }}{9.8 \mathrm{~N}}\right]=15 \mathrm{psi}
$$

- 20 square inches $=300$ pounds!
- Why don't you feel that force pushing your hand down?
- What if all the air below your hand was removed (a vacuum)?

Before Class 22 on Wednesday

- On Friday there is a MasteringPhysics Problem Set due by $11: 59 \mathrm{pm}$.
- Before Practicals this week, please read the first 4 sections of Chapter 15 of Knight.
- Something to think about: The two identical beakers shown are filled to the same height with water. Beaker B has a plastic sphere floating in it. Which beaker, with all of its contents, weighs more? Or are they the same weight?

