PHY131H1F
 University of Toronto

Class 8 Preclass Video by Jason Harlow

Based on Knight $3{ }^{\text {rd }}$ edition Ch. 4, sections 4.5 to 4.7 , pgs. 98-108

Circular Motion

- Consider a ball on a roulette wheel
- It moves along a circular path of radius r
- Other examples of circular motion are a satellite in an orbit, or a ball on the end of a string
- Circular motion is an example of two-dimensional
 motion in a plane

Angular Position

- Consider a particle at a distance r from the origin, at an angle θ from the positive x axis
- The angle may be measured in degrees, revolutions (rev) or radians (rad), that are related by:

$$
1 \mathrm{rev}=360^{\circ}=2 \pi \mathrm{rad}
$$

- If the angle is measured in radians, then there is a simple relation between θ and the arc length s that the particle travels along the edge of a circle of radius r :

$$
s=r \theta \quad \text { (with } \theta \text { in rad) }
$$

Uniform Circular Motion

$$
v=\frac{1 \text { circumference }}{1 \text { period }}=\frac{2 \pi r}{T}
$$

- As the time interval Δt becomes very small, we arrive at the definition of instantaneous angular velocity

$$
\omega \equiv \lim _{\Delta t \rightarrow 0} \frac{\Delta \theta}{\Delta t}=\frac{d \theta}{d t} \quad \text { (angular velocity) }
$$

$\omega=$ slope of the θ-versus- t graph at time t
$\theta_{\mathrm{f}}=\theta_{\mathrm{i}}+$ area under the ω-versus- t curve between t_{i} and t_{f} $=\theta_{\mathrm{i}}+\omega \Delta t$

Angular Velocity in Uniform Circular Motion

- When angular velocity ω is constant, this is uniform circular motion
- In this case, as the particle goes around a circle one time, its angular displacement is $\Delta \theta=2 \pi$ during one period $\Delta t=T$
- The absolute value of the constant angular velocity is related to the period of the motion by

$$
|\omega|=\frac{2 \pi \mathrm{rad}}{T} \quad \text { or } \quad T=\frac{2 \pi \mathrm{rad}}{|\omega|}
$$

Tangential Velocity

- The tangential velocity component v_{t} is the rate $d s / d t$ at which the particle moves around the circle, where s is the ω arc length
- The tangential velocity and the angular velocity are related by
$v_{t}=\omega r \quad($ with ω in $\mathrm{rad} / \mathrm{s})$
- In this equation, the units of v_{t} are m / s, the units of ω are $\mathrm{rad} / \mathrm{s}$, and the units of r are m

Section 4.7

Angular Kinematics

- The same relations that hold for linear motion between a_{x}, v_{x} and x apply analogously to rotational motion for α, ω and θ
- There is a graphical relationship between α and ω :
$\alpha=$ slope of the ω-versus- t graph at time t
$\omega_{\mathrm{f}}=\omega_{\mathrm{i}}+$ area under the α-versus- t curve between t_{i} and t_{f}
- The table shows a comparison of the rotational and linear kinematics equations for constant α or constant a_{s} :

Rotational kinematics	Linear kinematics
$\omega_{\mathrm{f}}=\omega_{\mathrm{i}}+\alpha \Delta t$	$v_{\mathrm{fs}}=v_{\mathrm{is}}+a_{s} \Delta t$
$\theta_{\mathrm{f}}=\theta_{\mathrm{i}}+\omega_{\mathrm{i}} \Delta t+\frac{1}{2} \alpha(\Delta t)^{2}$	$s_{\mathrm{f}}=s_{\mathrm{i}}+v_{\mathrm{i} s} \Delta t+\frac{1}{2} a_{s}(\Delta t)^{2}$
$\omega_{\mathrm{f}}^{2}=\omega_{\mathrm{i}}^{2}+2 \alpha \Delta \theta$	$v_{\mathrm{fs}}{ }^{2}=v_{\mathrm{is}}{ }^{2}+2 a_{s} \Delta s$

Angular Velocity of a Rotating Object

- The figure shows a wheel rotating on an axle
- Points 1 and 2 turn through the same angle as the wheel rotates
- That is, $\Delta \theta_{1}=\Delta \theta_{2}$ during some time interval Δt
- Therefore $\omega_{1}=\omega_{2}=\omega$

Every point on Every point on
the wheel undergoe circular motion with the same angular velocity ω.

- All points on the wheel rotate with the same angular velocity
- We can refer to ω as the angular velocity of the wheel

The Sign of Angular Acceleration

- If ω is counter-clockwise and $|\omega|$ is increasing, then α is positive
- If ω is counter-clockwise and $|\omega|$ is decreasing, then α is negative
- If ω is clockwise and $|\omega|$ is decreasing, then α is positive
- If ω is clockwise and $|\omega|$ is increasing, then α is negative

Acceleration in Nonuniform Circular Motion

- The particle in the figure is moving along a circle and is speeding up
- The centripetal acceleration is $a_{r}=v_{t}^{2} / r$, where v_{t} is the tangential speed
- There is also a tangential acceleration a_{t} which is always tangent to the circle
- The magnitude of the total acceleration is

Nonuniform Circular Motion

- A particle moves along a circle and may be changing speed
- The distance traveled along the circle is related to θ :
$s=r \theta \quad$ (with θ in rad)

- The tangential velocity is related to the angular velocity:

$$
v_{t}=\omega r \quad(\text { with } \omega \text { in } \mathrm{rad} / \mathrm{s})
$$

- The tangential acceleration is related to the angular acceleration:

$$
a_{t}=\frac{d v_{t}}{d t}=\frac{d(\omega r)}{d t}=\frac{d \omega}{d t} r=\alpha r
$$

