PHY131H1F
 University of Toronto

Class 9 Preclass Video
by Jason Harlow

Based on Knight $3^{\text {rd }}$ edition

Ch. 5, pgs. 116-133

- A force acts on an object
- Pushes and pulls are applied to something
- From the object's perspective, it has a force exerted on it

What is a force?

- Contact forces are forces that act on an object by touching it at a point of contact
- The bat must touch the ball to hit it

- Long-range forces are forces that act on an object without physical contact
- A coffee cup released from your hand is pulled to the earth by the long-range force of gravity

Section 5.1

What is a force?

- A force requires an agent, something that acts or exerts power
- If you throw a ball, your hand is the agent or cause of the force exerted on the ball
- A force is a vector
- To quantify a push or pull, we need to specify both magnitude and a direction

Tactics: Drawing force vectors

TACTICS Drawing force vectors

(0) Represent the object as a particle.
(2) Place the tail of the force vector on the particle.
(3) Draw the force vector as an arrow pointing in the proper direction and with a length proportional to the size of the force.

4 Give the vector an appropriate label.

Example: Drawing a force vector

A box is pulled to the right by a rope.

Example: Drawing a force vector
A box is pulled down by gravity.

Earth is the agent.

Example: Drawing a force vector

A box is pushed to the right by a spring

Combining Forces

- A box is pulled by two ropes, as shown
- When several forces are exerted on an object, they combine to form a net force given by the vector

Gravity

- The pull of a planet on an object near the surface is called the gravitational force
- The agent for the gravitational force is the entire planet
- Gravity acts on all objects, whether moving or at rest
- The gravitational force vector always points vertically downward

The gravitational force pulls the box down.

Ground

Spring Force

- A spring can either push (when compressed) or pull (when stretched)
- Not all springs are metal coils
- Whenever an elastic object is flexed or deformed in some way, and then "springs" back to its original shape when you let it go, this is a spring force

Tension Force

- When a string or rope or wire pulls on an object, it exerts a contact force called the tension force
- The tension force is in the direction of the string or rope
- A rope is made of atoms joined $\stackrel{\vec{T}}{\longleftrightarrow} \stackrel{\text { Rope }}{\vec{T}} \xrightarrow{\stackrel{\rightharpoonup}{l}}$ together by molecular bonds
- Molecular bonds can be modeled as tiny springs holding the atoms together
- Tension is a result of many molecular springs stretching ever so slightly

Examples of Normal Force

- Suppose you place your hand on a wall and lean against it
- The wall exerts a horizontal normal force on your hand

$$
\begin{aligned}
& \text { The compressed... } \\
& \text { molecular springs }
\end{aligned}
$$ in the wall press outward against her hand.

- Suppose a frog sits on an inclined surface
- The surface exerts a tilted normal force on the frog

Static Friction

- Static friction is the contact force that keeps an object "stuck" on a surface, and prevents relative motion
- The static friction force is directed tangent to the surface
- Static friction points opposite the direction in which the object would move if there were no static friction

Drag

- Kinetic friction is a resistive force, which opposes or resists motion
- Resistive forces are also experienced by objects moving through fluids
- The resistive force of a fluid is called drag

Air resistance is a significant force on falling leaves. It points opposite the direction of motion.

- Drag points opposite the direction of motion
- For heavy and compact objects in air, drag force is fairly small
- You can neglect air resistance in all problems unless a problem explicitly asks you to include it

Electric and Magnetic Forces

- Electricity and magnetism, like gravity, exert long-range forces
- Atoms and molecules are made of electrically charged particles
- Molecular bonds are due to the electric force between these particles
- Most forces, such as normal force and tension, are actually caused by electric forces between
 the charged particles in the atoms

Symbols for Forces:	Force	Notation
	General force	\vec{F}
	Gravitational force	\vec{F}_{G}
	Spring force	\vec{F}_{sp}
	Tension	\vec{T}
	Normal force	\vec{n}
	Static friction	\vec{f}_{s}
	Kinetic friction	\vec{f}_{k}
	Drag	\vec{D}
	Thrust	$\vec{F}_{\text {thrust }}$

Thrust

- A jet airplane or a rocket has a thrust force pushing it forward during takeoff
- Thrust occurs when an engine expels gas molecules at high speed
- This exhaust gas exerts a on a rocket by exhaust contact force on the engine gases.
- The direction of thrust is opposite the direction in which the exhaust gas is expelled

Section 5.3

Tactics: Identifying forces

TACTICS Identifying forces

0 Identify the object of interest. This is the object whose motion you wish to study.
(2) Draw a picture of the situation. Show the object of interest and all other objects-such as ropes, springs, or surfaces-that touch it.
(3) Draw a closed curve around the object. Only the object of interest is inside the curve; everything else is outside.

Tactics: Identifying forces

TACTICS Identifying forces

(4) Locate every point on the boundary of this curve where other objects touch the object of interest. These are the points where contact forces are exerted on the object.
© Name and label each contact force acting on the object. There is at least one force at each point of contact; there may be more than one. When necessary, use subscripts to distinguish forces of the same type.

What Do Forces Do? A Virtual Experiment

- Attach a stretched rubber band to a 1 kg block
- Use the rubber band to pull the block across a horizontal, frictionless table
- Keep the rubber band stretched by a fixed amount
- We find that the block moves with a constant acceleration

What Do Forces Do? A Virtual Experiment

- When a 1 kg block is pulled on a frictionless surface by a single elastic band stretched to the standard length, it accelerates with constant acceleration a_{1}
- Repeat the experiment with $2,3,4$, and 5 rubber bands attached side-by-side

> The acceleration is directly proportional to the force

Please read Section 5.3

Section 5.4

What Do Forces
Do? A Virtual Experiment
- A standard rubber band can be stretched to some standard length

- This will exert a reproducible spring force of magnitude F on whatever it is attached to
- N side-by-side rubber bands exert N times the standard force: $F_{\text {net }}=N F$

What Do Forces Do? A Virtual Experiment

- When a 1 kg block is pulled on a frictionless surface by a single elastic band stretched to the standard length, it accelerates with constant acceleration a_{1}
- Repeat the experiment with a $2 \mathrm{~kg}, 3 \mathrm{~kg}$ and 4 kg block
- The acceleration is inversely proportional to
 the mass

What Do Forces Do? A Virtual Experiment

- Force causes an object to accelerate!
- The result of the experiment is: $a=\frac{F}{m}$
- The basic unit of force is the newton (N)
- $1 \mathrm{~N}=1 \mathrm{~kg} \mathrm{~m} / \mathrm{s}^{2}$

TABLE 5.1 Approximate magnitude of some typical forces

Force	Approximate magnitude (newtons)
Weight of a U.S. quarter	0.05
Weight of a 1 pound object	5
Weight of a 110 pound person	500
Propulsion force of a car	5,000
Thrust force of a rocket motor	5,000,000

Section 5.5

- An object with twice the amount of matter accelerates only half as much in response to the same force
- The more matter an object has, the more it resists accelerating in response to the same force
- The tendency of an object to resist a change in its velocity is called inertia
- The mass used in $a=F / m$ is called inertial mass

Newton's Second
 Law

- When more than one force is acting on an object, the object accelerates in the direction of the net force vector $\vec{F}_{\text {net }}$

Newton's Second Law

Newton's second law An object of mass m subjected to forces $\vec{F}_{1}, \vec{F}_{2}, \vec{F}_{3}, \ldots$ will undergo an acceleration \vec{a} given by

$$
\begin{equation*}
\vec{a}=\frac{\vec{F}_{\mathrm{net}}}{m} \tag{5.5}
\end{equation*}
$$

where the net force $\vec{F}_{\text {net }}=\vec{F}_{1}+\vec{F}_{2}+\vec{F}_{3}+\cdots$ is the vector sum of all forces acting on the object. The acceleration vector \vec{a} points in the same direction as the net force vector $\vec{F}_{\text {net }}$

Newton's first law An object that is at rest will remain at rest, or an object that is moving will continue to move in a straight line with constant velocity, if and only if the net force acting on the object is zero.

Section 5.6

Newton's First Law

- An object on which the net force is zero is said to be in mechanical equilibrium
- There are two forms of mechanical equilibrium: - If the object is at rest, then it is in static equilibrium
- If the object is moving with constant velocity, it is in dynamic equilibrium
 velocity is in dynamic equilibrium: $\vec{F}_{\text {net }}=\overrightarrow{0}$.
- Newton's first law is also known as the law of inertia
- If an object is at rest, it has a tendency to stay at rest
- If it is moving, it has a tendency to continue moving with the same velocity

Inertial Reference Frames

- If a car stops suddenly, you may be "thrown" forward
- You do have a forward acceleration relative to the car
- However, there is no force pushing you forward

This guy thinks there's a force hurling him into the windshield. What a dummy!

- We define an inertial reference frame as one in which

Newton's laws are valid

- The interior of a crashing car is not an inertial reference frame!

Inertial Reference Frames

- A physics student cruises at a constant velocity in an airplane
- A ball placed on the floor stays at rest relative to the airplane

- There are no horizontal forces on the ball, so $\vec{a}=0$ when $\vec{F}_{\text {net }}=0$
- Newton's first law is satisfied, so this airplane is an inertial reference frame

Inertial Reference Frames

- A physics student is standing up in an airplane during takeoff
- A ball placed on the floor rolls toward the back of the plane

- There are no horizontal forces on the ball, and yet the ball accelerates in the plane's reference frame
- Newton's first law is violated, therefore this airplane is not an inertial reference frame
- In general, accelerating reference frames are not inertial reference frames

Thinking About Force

- Every force has an agent which causes the force
- Forces exist at the point of contact between the agent and the object (except for the few special cases of long-range forces)
- Forces exist due to interactions happening now, not due to what happened in the past
- Consider a flying arrow
- A pushing force was required to accelerate the arrow as it was shot
- However, no force is needed to keep the arrow moving forward as it flies
- It continues to move because of inertia

Tactics: Drawing a free-body diagram

TACTICS Drawing a free-body diagram

(1) Identify all forces acting on the object. This step was described in Tactics Box 5.2
(2) Draw a coordinate system. Use the axes defined in your pictorial representation.
(3) Represent the object as a dot at the origin of the coordinate axes. This is the particle model.

Please read Section 5.7

TACTICS Drawing a free-body diagram

(4) Draw vectors representing each of the identified forces. This was described in Tactics Box 5.1. Be sure to label each force vector.
6 Draw and label the net force vector $\vec{F}_{\text {net }}$. Draw this vector beside the diagram, not on the particle. Or, if appropriate, write $\vec{F}_{\text {net }}=\overrightarrow{0}$. Then check that $\vec{F}_{\text {net }}$ points in the same direction as the acceleration vector \vec{a} on your motion diagram.

