PHY131H1F
 University of Toronto

Class 10 Preclass Video
 by Jason Harlow

Based on Knight $3^{\text {rd }}$ edition

Ch. 6, Sections 6.1-6.3
pgs. 138-147

Equilibrium

- An object on which the net force is zero is in equilibrium
- If the object is at rest, it is in static equilibrium
- If the object is moving along a straight line with a constant velocity it is in dynamic equilibrium
- The requirement for either type of equilibrium is:

$$
\begin{aligned}
& \left(F_{\text {net }}\right)_{x}=\sum_{i}\left(F_{i}\right)_{x}=0 \\
& \left(F_{\text {net }}\right)_{y}=\sum_{i}\left(F_{i}\right)_{y}=0
\end{aligned}
$$

The concept of equilibrium is essential for the engineering analysis of stationary objects such as bridges.

Sections $6.1 \& 6.2$

Problem-Solving Strategy: Dynamics problems

$$
\begin{aligned}
& \text { SROBLEM-SOLVING Dynamics problems } \\
& \text { SOLVE The mathematical representation is based on Newton's second law: } \\
& \qquad \vec{F}_{\text {net }}=\sum_{i} \vec{F}_{i}=m \vec{a}
\end{aligned}
$$

The vector sum of the forces is found directly from the free-body diagram. Depending on the problem, either

- Solve for the acceleration, then use kinematics to find velocities and positions; or
- Use kinematics to determine the acceleration, then solve for unknown forces.

ASSESS Check that your result has the correct units, is reasonable, and answers the question.

Section 6.3

Gravity: A Force

- Gravity is an attractive, long-range force between any two objects
- The figure shows two objects with masses m_{1} and m_{2} whose centers are separated by distance r
- Each object pulls on the other with a force:

$F_{1 \text { on } 2}=F_{2 \text { on } 1}=\frac{G m_{1} m_{2}}{r^{2}} \quad$ (Newton's law of gravity)
- where $G=6.67 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} / \mathrm{kg}^{2}$ is the gravitational constant

Gravity: A Force

- The gravitational force between two human-sized objects is very small
- Only when one of the objects is planet-sized or larger does gravity become an important force

For objects near the surface of the planet earth:

$$
\vec{F}_{\mathrm{G}}=\vec{F}_{\text {planet on } m}=\left(\frac{G M m}{R^{2}}, \text { straight down }\right)=(\mathrm{mg}, \text { straight down })
$$

- where M and R are the mass and radius of the earth, and $g=9.80 \mathrm{~m} / \mathrm{s}^{2}$

Gravity: A Force

- The magnitude of the gravitational force is $F_{G}=m g$, where

$$
g=\frac{G M}{R^{2}}
$$

- The figure shows the free-body diagram of an object in free fall near the surface of a planet
- With $\vec{F}_{\text {net }}=\vec{F}_{G}$, Newton's second law predicts the acceleration to be:

Gravity is the only force acting on this object, so $\vec{F}_{\text {net }}=\vec{F}_{\mathrm{G}}$
$\vec{a}_{\text {free fall }}=\frac{\vec{F}_{\text {net }}}{m}=\frac{\vec{F}_{\mathrm{G}}}{m}=(\mathrm{g}$, straight down $)$

- All objects on the same planet, regardless of mass, have the same free-fall acceleration!

Weight: A Measurement

The scale reading is the magnitude

- You weigh apples in the grocery store by placing them in a spring scale and stretching a spring
- The reading of the spring scale is the magnitude of $F_{\text {sp }}$
- We define the weight of an object as the reading $F_{\text {sp }}$ of a calibrated spring scale on which the object is stationary
- Because $F_{\text {sp }}$ is a force, weight is measured in newtons

Weight: A Measurement

- The figure shows a man weighing himself in an accelerating elevator
- Looking at the free-body diagram, the y-component of Newton's second law is:
$\left(F_{\mathrm{net}}\right)_{y}=\left(F_{\mathrm{sp}}\right)_{y}+\left(F_{\mathrm{G}}\right)_{y}=F_{\mathrm{sp}}-m g=m a_{y}$
- The man's weight as he accelerates vertically is:
$w=$ scale reading $F_{\mathrm{sp}}=m g+m a_{y}=m g\left(1+\frac{a_{y}}{g}\right)$
- You weigh more as an elevator accelerates upward!

Weight: A Measurement

- A bathroom scale uses compressed springs which push up
- When any spring scale measures an object at rest, $\vec{F}_{\text {net }}=\overrightarrow{0}$
- The upward spring force exactly balances the downward gravitational force of magnitude
 $m g$:

$$
F_{\mathrm{sp}}=F_{\mathrm{G}}=m g
$$

- Weight is defined as the magnitude of $F_{\text {sp }}$ when the object is at rest relative to the stationary scale:

$$
w=m g \quad \text { (weight of a stationary object) }
$$

Weightlessness

- The weight of an object which accelerates vertically is

$$
w=\text { scale reading } F_{\mathrm{sp}}=m g+m a_{y}=m g\left(1+\frac{a_{y}}{g}\right)
$$

- If an object is accelerating downwards with $a_{y}=-g$, then $w=0$
- An object in free fall has no weight!
- Astronauts in orbiting the earth are also weightless
- Does this mean that they are in free fall?

