

Last day I asked at the end of class:

- When astronauts are floating in a space station, are they really weightless?
- ANSWER: YES!
- Knight's definition of weight means the amount of force needed to support an object in your frame of reference.

Last-night's Midterm Test

- Thanks for writing the test last night
- If you missed it, please bring medical documentation to April Seeley in MP129
- I have posted solutions on the course web-site under "Lectures - Harlow"
- We will get it marked as soon as possible - probably 1 or 2 weeks, then return it to you in Practicals

Clicker Question 1

Which of the following objects described below is in dynamic equilibrium?
A. A 100 kg barbell is held at rest over your head
B. A steel beam is lifted upward at constant speed by a crane.
C. A baseball is flying through the air and air resistance is negligible.
D. A steel beam is being lowered into place. It is slowing down.
E. A box in the back of a truck doesn't slide as the truck is slowing down.

Preparation for Practicals today, tomorrow and Friday:

- Take a ride on the Burton Tower elevators!
- All 4 elevators in the 14 -storey tower of McLennan Physical Labs are equipped with a hanging spring-scale.
- It measures the upward force necessary to support a 750 g mass. (a.k.a. "weight")
- You may find that the measured weight of this object changes as you accelerate -

Survey Last-night's Midterm Test

- Often students find that preparing an aid-sheet is a good way to study before a test.
- How useful was your aid-sheet to you during the midterm test?
A. Very useful (I referred to it for more than half the questions)
B. Useful
C. A little bit useful (I may have checked it once or twice)
D. Not useful
E. Honestly, I did not need the aid-sheet at all during the test!

Clicker Question 2

- A car is driving at a steady speed on a straight and level road.

Quick quiz [1/4]: inside the car, is it...

A: Inertial Reference Frame
B: Not an inertial reference frame

Clicker Question 3

- A car is driving at a steady speed up a 10° incline.

Quick quiz [2/4]: inside the car, is it...

A: Inertial Reference Frame

B: Not an inertial reference frame

Clicker Question 5

- A car is driving at a steady speed around a curve on a level road.

Quick quiz [4/4]: inside the car, is it...

A: Inertial Reference Frame

B: Not an inertial reference frame

Clicker Question 4

- A car is speeding up after leaving a stop sign, on a straight and level road.

Quick quiz [3/4]: inside the car, is it...

A: Inertial Reference Frame

B: Not an inertial reference frame

Gravity for the universe

It was Newton who first recognized that gravity is an attractive, long-range force between any two objects. Somewhat more loosely, gravity is a force that acts on mass. When two objects with masses m_{1} and m_{2} are mass. When two objects with masses m_{1} and m_{2} are
separated by distance r, each object pulls on the other with a force given by Newton's law of gravity, as follows:

$$
r=\text { centre-to-centre Aistance }
$$

$F_{1 \text { on } 2}=F_{2 \text { on } 1}=\frac{G m_{1} m_{2}}{r^{2}}$
(Newton's law of gravity) of
(Sometimes called "Newton's $4^{\text {th }}$ Law", or

$$
m_{1} \& m_{2}
$$

"Newton's Law of Universal Gravitation")

Gravity for Earthlings

If you happen to live on the surface of a large planet with radius R and mass M, you can write the gravitational force more simply as

$$
\vec{F}_{\mathrm{G}}=(m g, \text { straight down }) \quad(\text { gravitational force })
$$

where the quantity g is defined to be:

$$
g=\frac{G M}{R^{2}}
$$

At sea level, $g=9.83 \mathrm{~m} / \mathrm{s}^{2}$. At 39 km altitude, $g=9.71 \mathrm{~m} / \mathrm{s}^{2}$.

Weight $=$ Weight ??!?

- Physics textbooks and physics teachers do not all agree on the definition of the word "weight"!
- Sometimes "weight" means the exact same thing as "force of gravity". That is not how Randall Knight uses the word. (I will follow
 Knight's definitions.)
- In Knight, "weight" means the magnitude of the upward force being used to support an object.
- If the object is at rest or moving at a constant velocity relative to the earth, then the object is in equilibrium. The upward supporting force exactly balances the downward gravitational force, so that weight $=m g$.

Gravity Example

A mass, m, rests on the surface a giant spherical rock which is floating in space.
The giant rock has a mass of 6×10^{24} kg and a radius of 6400 km .
What is the force of gravity on the mass due to the giant rock? $m_{1}=m$

Gravity: $F_{\mathrm{G}}=m g$ is just a short form!

$$
\begin{gathered}
F_{1 \text { on } 2}=F_{2 \text { on } 1}=\frac{G m_{1} m_{2}}{r^{2}} \\
\text { and } \\
\vec{F}_{\mathrm{G}}=(m g, \text { straight down })
\end{gathered}
$$

are the same equation, with different notation! The only difference is that in the second equation we have assumed that $m_{2}=M$ (mass of the earth) and $r \approx R$ (radius of the earth).

Clicker Question 6

$$
\text { When } a=0 \text {, }
$$

- When I stand on a scale in my flbd. of bathroom it reads 185 pounds. 2.2 Harlow pounds = 9.8 Newtons, so this means the upward force on my feet when I am standing still is $185 \mathrm{lbs}(9.8 \mathrm{~N} / 2.2$ $\mathrm{lbs})=824 \mathrm{~N}$.
- If I ride an elevator which is accelerating upward at $1.5 \mathrm{~m} / \mathrm{s}^{2}$, what is the upward force on my feet?
- With no calculations, take a wild guess from this list:
A. 824 N
B. 950 N
C. 698 N

$$
\text { Solve for } n: \quad n=m a_{y}+m g
$$

D. 0 N
E. -824 N

$$
\begin{array}{r}
n=m g\left(1+\frac{a_{4}}{9}\right) \\
n=824\left(1+\frac{15}{9.8}\right)=9950 \mathrm{~N}
\end{array}
$$

$$
\begin{aligned}
& \begin{array}{l}
i_{n} \uparrow^{y} \text { Scale reads } n . \\
i_{m g}\left(F_{\text {vet }}\right)_{y}=0=n-m g
\end{array} \\
& n=m g=824 \mathrm{~N} \\
& \left\{\begin{array}{l}
\eta_{n} \quad\left\{\vec{a}=1.5 \mathrm{~m} / \mathrm{s}^{2},\right. \text { up } \\
m g \\
a_{y}=+1.5 \mathrm{~m} / \mathrm{s}^{2} \\
\left(F_{\text {Net }}\right)_{y}=m a_{y}=n-m g
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& F_{g}=\frac{G m_{1} m_{2}}{R^{2}} \\
& =\frac{6.67 \times 10^{-11}(\mathrm{~m}) 6 \times 10^{24}}{\left(6400 \times 10^{3}\right)^{2}} \\
& F_{g}=9.8 \mathrm{~m} \\
& \text { Units of } 9.8 \\
& \begin{array}{l}
{\left[\frac{N \cdot m^{x}}{\mathrm{~kg}^{2}}\right] \frac{\mathrm{kg}}{m^{2}}=\left[\frac{N}{\mathrm{~kg}}\right]} \\
N=\frac{\mathrm{kg} m}{s^{2}} \quad \frac{N}{\mathrm{~kg}}=\frac{m}{s^{2}}
\end{array}
\end{aligned}
$$

Clicker Question 7

Spring scale on an elevator

You are attempting to pour out 1.0 kg of flour, using a kitchen scale on an elevator which is accelerating upward at $1.5 \mathrm{~m} / \mathrm{s}^{2}$.
The amount of flour you pour will be
A. too much.
B. too little.
C. the correct amount.

Pan balance on an elevator

You are attempting to pour out 100 g of salt, using a pan balance on an elevator which is accelerating upward at $1.5 \mathrm{~m} / \mathrm{s}^{2}$. Will the amount of salt you pour be
A. Too much
B. Too little
C. The correct amount

Self-adjusting forces

Gravity, F_{G}, has an equation for it which predicts the correct magnitude (it's always $m g$ here on Earth).

- Normal force, Tension and Static friction are all selfadjusting forces: there is no equation for these!!
- Normal force is whatever is needed to keep the object from crashing through the surface.
- Tension is whatever is needed to keep the string or rope from breaking.
- Static friction is whatever is needed to keep the object from slipping along the surface.
- In all these cases, you must draw a free-body diagram and figure out by using equilibrium and Newton's $2^{\text {nd }}$ law what the needed force is.

Getting the piano on the truck

- A piano has a mass of 225 kg .

1. What force is required to push the piano
upwards at a constant velocity as you lift it
into the back of a truck?

$F_{1}=m g=(225)(9.8$
$F_{p}=2200 \mathrm{~N}$

A piano has a mass of 225 kg .
2. What force is required to push the piano up a frictionless ramp at a constant velocity into the truck? Assume the ramp is 3.00 m long and the floor of the truck is 1.00 m high?

Getting the piano on the truck

- A piano has a mass of 225 kg .

2. What force is required to push the piano up a frictionless ramp at a constant velocity into the truck? Assume the ramp is 3.00 m long and the floor of the truck is 1.00 m high?

Define:
$4 \pi 0$
$F_{p}=735 N$.

Clicker Question 9
Bob stands under a low concrete arch, and presses upwards on it with a force of 100 N . Bob's mass is 82 kg . He is in equilibrium. What is the total normal force of the ground on Bob? (Note that $82 \times 9.8=800$.)
A. 800 N , upward B. 800 N, downward
C. 900 N, upward
D. 700 N, upward
E. 900 N, downward

$$
\left(F_{\text {Net }}\right)_{y}=0=n-800-100
$$

Before Class 11 next Wednesday

- Please finish reading Chapter 6
- Problem Set 4 is due Sunday night.
- Take a ride on the Burton Tower elevators, do prepwork for Mechanics Module 3 Activity 2.
- Please read the rest of Knight Chapter 6.
- Something to think about:

Does friction always slow things down? Can friction ever speed things up?

Happy Thanksgiving!

