


## Chapter 1 Concepts of Motion



**Chapter Goal:** To introduce the fundamental concepts of motion.

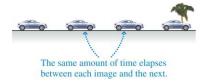
© 2013 Pearson Education Inc.



Four basic types of motion

di 2012 Barrera Education Inc.

## Making a Motion Diagram


- Consider an old-style movie of a moving object.
- Each separate photo is called a frame.
- The car is in a different position in each frame.



© 2013 Pearson Education, Inc.

## Making a Motion Diagram

- Imagine cutting individual frames of the filmstrip apart, and stacking them on top of each other.
- This composite photo shows an object's position at several equally spaced instants of time.
- This is called a motion diagram.



2013 Pearson Education, Inc

## The Particle Model

- Often we can treat the object as if all its mass were concentrated into a single point.
- A mass at a single point in space is called a particle.
- Below is a motion diagram of a car stopping, using the particle model.

© 2013 Pearson Education, Inc

#### Position as a Vector

- Shown is the motion diagram of a basketball, with 0.5 s intervals between frames.
- One way to locate the ball is to draw an arrow from the origin to the point representing the ball.
- You can then specify the length and direction of the arrow.
- This arrow is called the position vector \$\vec{r}\$ of the object.
- The position vector \( \vec{r} \) is an alternative form of specifying position.
- Another way of specifying position is to use coordinates (x, y).

Frame 4  $\vec{r}_4 = (15 \text{ m}, 37^\circ)$   $\sqrt{37^\circ}$ 

Tactics: Vector Addition  $\sqrt{ector} \quad Addition \quad \vec{C} = \vec{A} + \vec{B}$ 

## **Definition of Displacement**

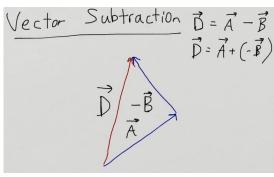
• The displacement  $\Delta \vec{r}$  of an object as it moves from an initial position  $\vec{r}_i$  to a final position  $\vec{r}_f$  is

$$\Delta \vec{r} = \vec{r}_{\rm f} - \vec{r}_{\rm i}$$

- The definition of  $\Delta \vec{r}$  involves vector subtraction.
- With numbers, subtraction is the same as the addition of a negative number.

Similarly, with vectors

 $\vec{A} - \vec{B} = \vec{A} + (-\vec{B})$ 


The negative of a vector.



Vector  $-\vec{B}$  has the same length as  $\vec{B}$  but points in the opposite direction.

© 2013 Pearson Education, Inc.

# **Tactics: Vector Subtraction**



© 2013 Pearson Education, In

## Time Interval



- It's useful to consider a change in time.
- An object may move from an initial position  $\vec{r}_i$  at time  $t_i$  to a final position  $\vec{r}_f$  at time  $t_f$ .

A stopwatch is used to measure a time interval.

• The time interval is called  $\Delta t$ .

© 2013 Pearson Education, In

## Average Speed, Average Velocity



The victory goes to the runner with the highest average speed.

To quantify an object's fastness or slowness, we define a ratio:

average speed =  $\frac{\text{distance traveled}}{\text{time interval spent traveling}} = \frac{d}{\Delta t}$ 

 Average speed is a scalar quantity (no direction information)

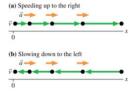
vector:

• The average velocity of an object during a time interval  $\Delta t$ , in which the object undergoes a displacement  $\Delta \vec{r}$ , is the

 $\vec{v}_{\rm avg} = \frac{\Delta \vec{r}}{\Delta t}$ 

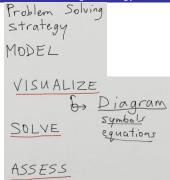
#### Acceleration

- Sometimes an object's velocity changes as it moves.
- Acceleration describes a change in velocity.
- Consider an object whose velocity changes from  $\vec{v}_1$  to  $\vec{v}_2$ during the time interval  $\Delta t$ .
- The quantity  $\Delta \vec{v} = \vec{v}_2 \vec{v}_1$  is the change in velocity.
- The rate of change of velocity is called the average acceleration:


$$a_{\rm avg} = \frac{\Delta \vec{v}}{\Delta t}$$



The Audi TT accelerates from 0 to 60 mph in 6 s.


## Speeding Up or Slowing Down?

- · When an object is speeding up, the acceleration and velocity vectors point in the same direction.
- When an object is slowing down, the acceleration and velocity vectors point in opposite directions.
- An object's velocity is constant if and only if its acceleration is zero.
- In the motion diagrams to the right, one object is speeding up and the other is slowing down, but they both have acceleration vectors toward the right.



Slide 1-53

# General Problem-Solving Strategy



Slide 1-73

#### **Units**

- Science is based on experimental measurements, and measurements require units.
- The system of units in science is called le Système Internationale d'unités or SI units.
- The SI unit of time is the second, abbreviated s.



An atomic clock at the National Institute of Standards and Technology.

• The SI unit of length is the meter, abbreviated m.

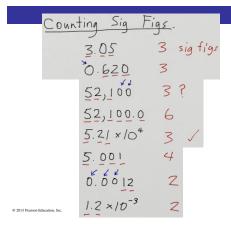
#### Units

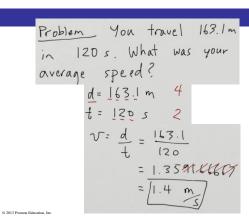
- The SI unit of mass is the kilogram, abbreviated kg.
- Many lengths, times, and masses are either much less or much greater than the standards of 1 m, 1 s, and 1 kg. Common prefixes
- We use prefixes to denote various powers of 10, which make it easier to talk about quantities.



| Prefix | Power of 10 | Abbreviation |
|--------|-------------|--------------|
| giga-  | 109         | G            |
| mega-  | 106         | M            |
| kilo-  | $10^{3}$    | k            |
| centi- | $10^{-2}$   | c            |
| milli- | $10^{-3}$   | m            |
| micro- | $10^{-6}$   | $\mu$        |
| nano-  | $10^{-9}$   | n            |

**Unit Conversions** 


Problem: My height is 6 feet. What is this in sm? I foot = 12 inches


3

# Significant Figures

- If you report a length as 6.2 m, you imply that the actual value is between 6.15 m and 6.25 m and has been rounded to 6.2.
- The number 6.2 has two significant figures.
- More precise measurement could give more significant figures.
- The appropriate number of significant figures is determined by the data provided.
- Calculations follow the "weakest link" rule: The input value with the smallest number of significant figures determines the number of significant figures to use in reporting the output value.

© 2013 Pearson Education, Inc. Slide 1-82





4