Class 4 - Sections 2.1-2.4, Preclass Notes

physics

Uniform Motion (Constant Speed)

- If you drive your car at a perfectly steady $60 \mathrm{~km} / \mathrm{hr}$, this means you change your position by 60 km for every time interval of 1 hour
- Uniform motion is when equal displacements occur during any successive equal-time intervals

Riding steadily over level ground is a good example of uniform motion.
 successive frames are the
same. Dots are equally spaced. v_{x} is constant.

Chapter 2 Goal: To learn how to solve problems about motion in a straight line.
\qquad

Uniform Motion (Constant Speed)

- For uniform motion, the ${ }^{x}$ position-versus-time graph is a straight line
- The average velocity is the slope of the position-versus-time graph
- The SI units of velocity
 are m / s
$v_{\text {avg }} \equiv \frac{\Delta x}{\Delta t}$ or $\frac{\Delta y}{\Delta t}=$ slope of the position-versus-time graph

Some Vocabulary

- The distance an object travels is a scalar quantity (no direction given, always positive)
- The displacement of an object is a vector quantity, equal to the final position minus the initial position
- An object's speed v is scalar quantity (no direction given, always positive)
- Velocity is a vector quantity that includes direction
- In one dimension, the direction of velocity is specified by the + or - sign

Instantaneous Velocity

- An object that is speeding up or slowing down is not in uniform motion
- In this case, the position-versus-time graph is not a straight line
- We can determine the average speed $v_{\text {avg }}$ between any two times separated by time interval Δt by finding the slope of the straight-line connection between the two points
- The instantaneous velocity is the is the object's velocity at a single instant of time t
- The average velocity $v_{\text {avg }}=\Delta s / \Delta t$ becomes a better and better approximation to the instantaneous velocity as Δt gets smaller and smaller

$$
v_{s} \equiv \lim _{\Delta t \rightarrow 0} \frac{\Delta s}{\Delta t}=\frac{d s}{d t}
$$

Instantaneous Velocity

Instantaneous Velocity

(c) The limiting case
ly magnified
f the graph it 2 is very ;traight line. \geq of this line is , proximation tantaneous at time t_{2}. The he instantelocity in the $\rightarrow 0$.

Motion with Constant Acceleration

- The SI units of acceleration are $(\mathrm{m} / \mathrm{s}) / \mathrm{s}$, or $\mathrm{m} / \mathrm{s}^{2}$
- It is the rate of change of velocity, and measures how quickly or slowly an object's velocity changes
- The average acceleration during a time interval Δt is

$$
a_{\mathrm{avg}} \equiv \frac{\Delta v_{s}}{\Delta t}
$$

- Graphically, $a_{\text {avg }}$ is the slope of a straight-line velocity-versus-time graph
- If acceleration is constant, the acceleration a_{s} is the same as $a_{\text {avg }}$
- Acceleration, like velocity, is a vector quantity and has both magnitude and direction

The Kinematic Equations of Constant Acceleration

- Suppose we know an object's velocity to be v_{is} at an initial time t_{i}
- We also know the object has a constant acceleration of a_{s} over the time interval $\Delta t=t_{\mathrm{f}}-t_{\mathrm{i}}$
- We can then find the object's velocity at the later time t_{f} as

$$
v_{\mathrm{fs}}=v_{\mathrm{is}}+a_{s} \Delta t
$$

Acceleration

- Imagine a competition between a Volkswagen Beetle and a Porsche to see which can achieve a velocity of $30 \mathrm{~m} / \mathrm{s}$ in the shortest time
- The table shows the velocity of each car, and the figure shows the velocity-versus-time graphs
- Both cars achieved every velocity between 0 and $30 \mathrm{~m} / \mathrm{s}$, so neither is faster
- But for the Porsche, the rate at which the velocity changed was

$$
\frac{\Delta v_{s}}{\Delta t}=\frac{30 \mathrm{~m} / \mathrm{s}}{6.0 \mathrm{~s}}=5.0(\mathrm{~m} / \mathrm{s}) / \mathrm{s}
$$

(a) Motion at constant velocity

The Kinematic Equations of Constant

Acceleration

- Suppose we know an object's position to be s_{i} at an initial time t_{i}
- It's constant acceleration a_{s} is shown in graph (a)
- The velocity-versus-time graph is shown in graph (b)
- The final position s_{f} is s_{i} plus the area under the curve of v_{s} between t_{i} and t_{f} :

$$
s_{\mathrm{f}}=s_{\mathrm{i}}+v_{\mathrm{i} s} \Delta t+\frac{1}{2} a_{s}(\Delta t)^{2}
$$

(a)

Displacement Δs is the area under the curve. The area can be b) Velocity $\begin{aligned} & \text { under the curve. The area can be } \\ & \text { divido a rectangle of height }\end{aligned}$

The Kinematic Equations of Constant Acceleration

- Suppose we know an object's velocity to be $v_{\text {is }}$ at an initial position s_{i}
- We also know the object has a constant acceleration of a_{s} while it travels a total displacement of $\Delta s=s_{\mathrm{f}}-s_{\mathrm{i}}$
- We can then find the object's velocity at the final position s_{f}

$$
v_{\mathrm{fs}}^{2}=v_{\mathrm{i} s}^{2}+2 a_{s} \Delta s
$$

The Kinematic Equations of Constant Acceleration

$$
\begin{aligned}
& v_{\mathrm{fs}}=v_{\mathrm{i} s}+a_{s} \Delta t \\
& s_{\mathrm{f}}=s_{\mathrm{i}}+v_{\mathrm{i} s} \Delta t+\frac{1}{2} a_{s}(\Delta t)^{2} \\
& v_{\mathrm{f} s}^{2}=v_{\mathrm{i} s}^{2}+2 a_{s} \Delta s
\end{aligned}
$$

