

Chapter 2 Goal: To learn how to solve problems about motion in a straight line.

Slide 2-2

2.5 Free Fall

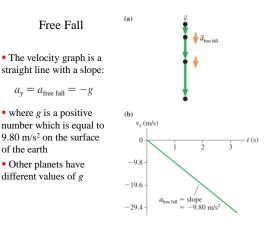
• The motion of an object moving under the influence of gravity only, and no other forces, is called **free fall**

• Two objects dropped from the same height will, if air resistance can be neglected, hit the ground at the same time and with the same speed

• Consequently, any two objects in free fall, regardless of their mass, have the same acceleration:

 $\vec{a}_{\text{free fall}} = (9.80 \text{ m/s}^2, \text{ vertically downward})$

The apple and feather seen here are falling in a vacuum.



2.6 Motion on an Inclined Plane

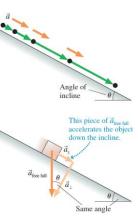
 Consider an object sliding down a straight, frictionless inclined plane

• $\vec{a}_{\text{free fall}}$ is the acceleration the object would have if the incline suddenly vanished.

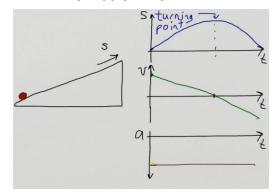
• This vector can be broken into two pieces: \vec{a}_{\parallel} and \vec{a}_{\perp}

• The surface somehow "blocks" \vec{a}_{\perp} , so the one-dimensional acceleration along the incline is:

 $a_s = \pm g \sin \theta$



Tactics: Interpreting graphical representations of motion



2.7 Non-Constant Acceleration

• Figure (a) shows a realistic (a) velocity-versus-time graph for a car leaving a stop sign

• The graph is not a straight line, so this is *not* motion with a constant acceleration

• Figure (b) shows the car's (b) a_x acceleration graph

• The **instantaneous acceleration** a_s is the slope of the line that is tangent to the velocity-versus-time curve at time *t*

 $a_s = \frac{dv_s}{dt}$ = slope of the velocity-versus-time graph at time t

Finding Velocity from Acceleration

• Suppose we know an object's velocity to be v_{is} at an initial time t_i

• We also know the acceleration as a function of time between *t*_i and some later time *t*_f

• Even if the acceleration is not constant, we can divide the motion into *N* steps of length Δt in which it is approximately constant

• In the limit $\Delta t \rightarrow 0$ we can compute the final velocity as

$$v_{\rm fs} = v_{\rm is} + \lim_{\Delta t \to 0} \sum_{k=1}^{N} (a_s)_k \Delta t = v_{\rm is} + \int_{t_{\rm i}}^{t_{\rm f}} a_s \, dt$$

•The integral may be interpreted graphically a_s the area under the acceleration curve as between t_i and t_f