Class 5 - Sections 2.5-2.7, Preclass Notes

physics

FOR SCIENTISTS AND ENGINEERS

2.5 Free Fall

- The motion of an object moving under the influence of gravity only, and no other forces, is called free fall
- Two objects dropped from the same height will, if air resistance can be neglected, hit the ground at the same time and with the same speed
- Consequently, any two objects in free fall, regardless of their mass, have the same acceleration:
$\vec{a}_{\text {free fall }}=\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right.$, vertically downward $)$

The apple and feather seen here are falling in a vacuum.

Free Fall

- The velocity graph is a straight line with a slope:

$$
a_{y}=a_{\text {free fall }}=-g
$$

(a)
where g is a positive number which is equal to $9.80 \mathrm{~m} / \mathrm{s}^{2}$ on the surface of the earth

- Other planets have different values of g
(b)

Tactics: Interpreting graphical representations of motion

2.6 Motion on an Inclined Plane

- Consider an object sliding down a straight, frictionless inclined plane
- $\vec{a}_{\text {free fall }}$ is the acceleration the object would have if the incline suddenly vanished.
- This vector can be broken into two pieces: $\vec{a}_{\|}$and \vec{a}_{\perp}
- The surface somehow "blocks" \vec{a}_{\perp}, so the onedimensional acceleration along the incline is:

$$
a_{s}= \pm g \sin \theta
$$

Chapter 2 Goal: To learn how to solve problems about motion in a straight line.

2.7 Non-Constant Acceleration

- Figure (a) shows a realistic velocity-versus-time graph for a car leaving a stop sign
- The graph is not a straight line, so this is not motion with a constant acceleration
- Figure (b) shows the car's acceleration graph
- The instantaneous acceleration a_{s} is the slope of the line that is tangent to the velocity-versus-time curve at time t
(a) The car speeds up from rest until a_{s} The value of the accel- $\begin{aligned} & \text { eration is the slope of } \\ & \text { the velocity graph. } \\ & a_{x} \\ & \text { Steep slope is large } \\ & \text { acceleration; the velocity } \\ & \text { Shallow slope is } \\ & \text { small acceleration. }\end{aligned}$ $a_{s}=\frac{d v_{s}}{d t}=$ slope of the velocity-versus-time graph at time t

Finding Velocity from Acceleration

- Suppose we know an object's velocity to be $v_{\text {is }}$ at an initial time t_{i}
- We also know the acceleration as a function of time between t_{i} and some later time t_{f}
- Even if the acceleration is not constant, we can divide the motion into N steps of length Δt in which it is approximately constant
- In the limit $\Delta t \rightarrow 0$ we can compute the final velocity as

$$
v_{\mathrm{fs}}=v_{\mathrm{i} s}+\lim _{\Delta t \rightarrow 0} \sum_{k=1}^{N}\left(a_{s}\right)_{k} \Delta t=v_{\mathrm{i} s}+\int_{t_{\mathrm{i}}}^{t_{\mathrm{f}}} a_{s} d t
$$

-The integral may be interpreted graphically a_{s} the area under the acceleration curve as between t_{i} and t_{f}

