Physics for Scientists and Engineers

A Strategic Approach with Modern Physics Third Edition by Randall D. Knight ©2013 by Pearson Education Inc. Chapter 3. Vectors and Coordinate Systems

- 3.1 Vectors
- 3.2 Properties of Vectors
- Please read pages 70 through 74

Vectors

• A quantity that is fully Magnitude described by a single number is of vector called a **scalar quantity** (ie mass, temperature, volume) $\int 5^{n/5}$

• A quantity having both a magnitude and a direction is called a **vector quantity**

• The *geometric representation* of a vector is an arrow with the tail of the arrow placed at the point where the measurement is made

Direction

of vector

—Name of vector

 \vec{s} and \vec{s} have the

and direction, so $\vec{R} = \vec{S}$

The vector represents the particle's velocity at this one point.

• We label vectors by drawing a small arrow over the letter that represents the vector, ie: \vec{r} for position, \vec{v} for velocity, \vec{a} for acceleration

Properties of Vectors

 Suppose Sam starts from his front door, takes a walk, and ends Sam's up 200 ft to the northeast of where he started
 We can write Sam's displacement as

the final position

End

mi

Individual

 $\vec{S} = (200 \text{ ft, northeast})$

The magnitude of Sam's displacement is $S = |\vec{S}| = 200$ ft, the distance between his initial and final points

Properties of Vectors

Bill's

Sam and Bill are neighbors
They both walk 200 ft to the northeast of their own front doors

• Bill's displacement $\vec{B} = (200 \text{ ft}, \frac{\text{Sam's}}{\text{house}})$ northeast) has the same magnitude and direction as

Sam's displacement S
Two vectors are equal if they have the same magnitude and direction

• This is true regardless of the starting points of the vectors • $\vec{B} = \vec{S}$

Vector Addition

• A hiker's displacement is 4 miles to the east, then 3 miles to the north, as shown \vec{A}

•Vector \vec{C} is the net displacement $\vec{C} = \vec{A} + \vec{B}$

isplacement
$$\vec{B}$$

Net displacement

• Because \vec{A} and \vec{B} are at right angles, the magnitude of *C* is given by the Pythagorean theorem:

$$C = \sqrt{A^2 + B^2} = \sqrt{(4 \text{ mi})^2 + (3 \text{ mi})^2} = 5 \text{ mi}$$

- To describe the direction of \vec{C} , we find the angle: $\theta = \tan^{-1}\left(\frac{B}{A}\right) = \tan^{-1}\left(\frac{3 \text{ mi}}{4 \text{ mi}}\right) = 37^{\circ}$
- Altogether, the hiker's net displacement is: $\vec{C} = \vec{A} + \vec{B} = (5 \text{ mi}, 37^{\circ} \text{ north of east})$

Parallelogram Rule for Vector Addition

• It is often convenient to draw two vectors with their tails together, as shown in (a) below

• To evaluate $\vec{F} = \vec{D} + \vec{E}$, you could move \vec{E} over and use the tip-to-tail rule, as shown in (b) below

• Alternatively, $\vec{F} = \vec{D} + \vec{E}$ can be found as the diagonal of the parallelogram defined by \vec{D} and \vec{E} , as shown in (c) below

Slide the tail of \vec{E} to the tip of \vec{D} .

Parallelogram rule: Find the diagonal of the parallelogram formed by \vec{D} and \vec{E} .

Addition of More than Two Vectors

Start

 Vector addition is easily extended to more than two vectors

• The figure shows the path of a hiker moving from initial position 0 to position 1, then 2, 3, and finally arriving at position 4

Net displacement End Ď,

• The four segments are described by displacement vectors \vec{D}_1 , $\vec{D}_2, \vec{D}_3 \text{ and } \vec{D}_4$

• The hiker's net displacement, an arrow from position 0 to 4, is

$$\vec{D}_{\rm net} = \vec{D}_1 + \vec{D}_2 + \vec{D}_3 + \vec{D}_4$$

• The vector sum is found by using the tip-to-tail method three times in succession

More Vector Mathematics

The negative of a vector

Multiplication by a negative scala

What is $\vec{A} - \vec{C}$ Vrite it as $\vec{A} + (-\vec{C})$ and add

Multiplication by a scalar

The *x*-component vector is parallel

to the x-axis

The v-component vector is parallel

to the y-axis.

Try: Stop To Think 3.1 and 3.2 (Answers are at the very end of the chapter.) Work Through: Examples 3.1 and 3.2

Physics for Scientists and Engineers

A Strategic Approach with Modern Physics Third Edition by Randall D. Knight ©2013 by Pearson Education Inc.

Chapter 3. Vectors and Coordinate Systems

- · 3.3 Coordinate Systems and Vector Components
- · Please read pages 74 through 77

Coordinate Systems and Vector Components

• A coordinate system is an artificially imposed grid that you place on a problem

- You are free to choose:
 - · Where to place the origin, and

· How to orient the axes Below is a conventional xycoordinate system and the four quadrants I through IV

Component Vectors

• The figure shows a vector \vec{A} and an xy-coordinate system that we've chosen

· We can define two new vectors parallel to the axes that we call the **component vectors** of \vec{A} , such that:

$$\vec{A} = \vec{A}_x + \vec{A}_y$$

• We have broken \vec{A} into two perpendicular vectors that are parallel to the coordinate axes

• This is called the **decomposition** of \vec{A} into its component vectors

Components

Suppose a vector \vec{A} has been decomposed into component vectors $\vec{A_x}$ and $\vec{A_y}$ parallel to the coordinate axes

• We can describe each component vector with a single number called the component

 The component tells us how big the component vector is, and, with its sign, which ends of the axis the Magnitude component vector points toward

• Shown to the right are two examples of determining the components of a vector

Tactics: Determining the components of a vector

- **()** The absolute value $|A_x|$ of the *x*-component A_x is the magnitude of the component vector \vec{A}_x .
- **2** The sign of A_x is positive if \vec{A}_x points in the positive x-direction, negative if \vec{A}_x points in the negative x-direction.
- S The y-component Ay is determined similarly.

Moving between the geometric representation and the component representation

• We will frequently need to decompose a vector into its components

• We will also need to "reassemble" a vector from its components

• The figure to the right shows how to move back and forth between the geometric and component representations of a vector

Moving between the geometric representation and the component representation

• If a component vector points left (or down), you must manually insert a minus sign in front of the component, as done for B_y in the figure to the right $B_y = B_y$

• The role of sines and cosines can be reversed, depending upon which angle is used to define the direction

• The angle used to define the direction is almost always between 0° and 90°

Here the components are $B_x = B \sin \phi$ and $B_y = -B \cos \phi$. Minus signs must be inserted manually, depending on the vector's direction.

Try: Stop To Think 3.3 (Answer is at the very end of the chapter.) Work Through: Examples 3.3 and 3.4

Physics for Scientists and Engineers A Strategic Approach with Modern Physics Third Edition by Randall D. Knight ©2013 by Pearson Education Inc.

Chapter 3. Vectors and Coordinate Systems

- 3.4 Vector Algebra
- Please read pages 77 through 80

Unit Vectors

2

1

The unit vectors have

and +y-direction.

magnitude 1, no units, and

point in the +x-direction

 Each vector in the figure to the right has a magnitude of 1, no units, and is parallel to a coordinate axis

 A vector with these properties is called a unit vector

These unit vectors have the special symbols

 $\hat{i} \equiv (1, \text{ positive } x \text{-direction})$

 $\hat{j} \equiv (1, \text{ positive y-direction})$

 Unit vectors establish the directions of the positive axes of the coordinate system

Vector Algebra

 When decomposing a vector, unit vectors provide a useful way to write component vectors:

 $\vec{A}_x = A_x \hat{\imath}$ $\vec{A}_{v} = A_{v}\hat{j}$

 The full decomposition of the vector \vec{A} can then be written

$$\vec{A} = \vec{A}_{\mathrm{r}} + \vec{A}_{\mathrm{v}} = A_{\mathrm{r}}\hat{\imath} + A_{\mathrm{v}}\hat{\imath}$$

 $\vec{A} = A_{\rm x}\hat{\imath} + A_{\rm y}\hat{\imath}$

1_x Ay **л**_x

by a scalar doesn't change the direction. Vector $A_r \hat{i}$ has length A_{r} and points in the direction of \hat{i} .

• We can perform vector addition by adding the x- and ycomponents separately

• This method is called algebraic addition

• For example, if $\vec{D} = \vec{A} + \vec{B} + \vec{C}$, then

$$D_x = A_x + B_x + C_x$$

 C_y

$$D_y = A_y + B_y +$$

• Similarly, to find $\vec{R} = \vec{P} - \vec{Q}$ we would compute

 $R_x = P_x - Q_x$

 $R_y = P_y - Q_y$

• To find $\vec{T} = c\vec{S}$, where c is a scalar, we would compute

 $T_{\rm r} = cS_{\rm r}$

$$T_y = cS_y$$

Tilted Axes and Arbitrary Directions

 For some problems it is convenient to tilt the axes of the coordinate system

The axes are still perpendicular to each other, but there is no requirement that the *x*-axis has to be horizontal

 Tilted axes are useful if you need to determine component vectors "parallel to" and "perpendicular to" an arbitrary line or surface

Trv: Stop To Think 3.4 (Answer is at the very end of the chapter.) Work Through: Examples 3.5 through 3.8