Physics for Scientists and Engineers

A Strategic Approach with Modern Physics Third Edition by Randall D. Knight © 2013 by Pearson Education Inc.

Chapter 3. Vectors and Coordinate

 Systems- 3.1 Vectors
- 3.2 Properties of Vectors
- Please read pages 70 through 74

Properties of Vectors

- The magnitude of Sam's displacement is $S=|\vec{S}|=200 \mathrm{ft}$, the distance between his initial and final points

Vectors

Properties of Vectors

- Sam and Bill are neighbors
- They both walk 200 ft to the northeast of their own front doors
- Bill's displacement $\vec{B}=(200 \mathrm{ft}$,
northeast) has the same magnitude and direction as Sam's displacement \vec{S}

- Two vectors are equal if they have the same magnitude and direction
- This is true regardless of the starting points of the vectors
- $\vec{B}=\vec{S}$

Parallelogram Rule for Vector Addition

- It is often convenient to draw two vectors with their tails together, as shown in (a) below
- To evaluate $\vec{F}=\vec{D}+\vec{E}$, you could move \vec{E} over and use the tip-to-tail rule, as shown in (b) below
- Alternatively, $\vec{F}=\vec{D}+\vec{E}$ can be found as the diagonal of the parallelogram defined by \vec{D} and \vec{E}, as shown in (c) below
(a)

(b)

Tip-to-tail rule: Slide the tail of \vec{E} to the tip of \vec{D}.

Parallelogram rule: Find the diagonal of the parallelogram formed by \vec{D} and \vec{E}.

Addition of More than Two Vectors

- Vector addition is easily
extended to more than two vectors
- The figure shows the path of a
hiker moving from initial position
0 to position 1 , then 2,3 , and
finally arriving at position 4
- The four segments are described by displacement vectors \vec{D}_{1}, \vec{D}_{2}, \vec{D}_{3} and \vec{D}_{4}
- The hiker's net displacement, an arrow from position 0 to 4 , is

$$
\vec{D}_{\mathrm{net}}=\vec{D}_{1}+\vec{D}_{2}+\vec{D}_{3}+\vec{D}_{4}
$$

- The vector sum is found by using the tip-to-tail method three times in succession

Try:
Stop To Think 3.1 and 3.2
(Answers are at the very end of the chapter.)
Work Through:
Examples 3.1 and 3.2

Coordinate Systems and Vector Components

- A coordinate system is an artificially imposed grid that you place on a problem
- You are free to choose:
- Where to place the origin, and
- How to orient the axes
- Below is a conventional $x y$ coordinate system and the four quadrants I through IV

More Vector Mathematics

The length of \vec{B} is "stretched"
by the factor c. That is, $B=c A$.

Vector subtraction: What is $A-C$?
Write it as $\vec{A}+(-\vec{C})$ and add

$\vec{A}-\vec{C} \underbrace{-\vec{C}}_{\vec{A}}$
Tip-to-tail method using $-C$

Physics for Scientists and Engineers
 A Strategic Approach with Modern Physics Third Edition by Randall D. Knight ©2013 by Pearson Education Inc. Chapter 3. Vectors and Coordinate Systems

- 3.3 Coordinate Systems and Vector Components
- Please read pages 74 through 77

Component Vectors

- The figure shows a vector \vec{A} and an $x y$-coordinate system that we've chosen
- We can define two new vectors parallel to the axes that we call the component vectors of \vec{A}, such that:

$$
\vec{A}=\vec{A}_{x}+\vec{A}_{y}
$$

- We have broken \vec{A} into two perpendicular vectors that are parallel to the coordinate axes
- This is called the decomposition of \vec{A} into its component vectors

Components

- Suppose a vector \vec{A} has been decomposed into component vectors $\overrightarrow{A_{x}}$ and $\overrightarrow{A_{y}}$ parallel to the coordinate axes
- We can describe each component vector with a single number called the component
- The component tells us how big the component vector is, and, with its sign, which ends of the axis the component vector points toward - Shown to the right are two examples of determining the components of a vector

Moving between the geometric representation and the component representation

- We will frequently need to decompose a vector into its components
- We will also need to
"reassemble" a vector from its components
- The figure to the right shows how to move back and forth between the geometric and component representations of a vector

Tactics: Determining the components of a vector

(1) The absolute value $\left|A_{x}\right|$ of the x-component A_{x} is the magnitude of the component vector \vec{A}_{x}
(2) The sign of A_{x} is positive if \vec{A}_{x} points in the positive x-direction, negative if \vec{A}_{x} points in the negative x-direction.
(3) The y-component A_{y} is determined similarly.

Moving between the geometric representation and the component representation

The angle is defined differently. In this

- If a component vector points left (or down), you must example, the magnitude and direction are $B=\sqrt{B_{x}^{2}+B_{y}^{2}} \quad \phi=\tan ^{-1}\left(B_{x}\left|B_{y}\right|\right)$ manually insert a minus sign in front of the component, as done for B_{y} in the figure to the right
- The role of sines and cosines | B_{y} | $=$ |
| ---: | :--- | can be reversed, depending upon which angle is used to define the direction
- The angle used to define the direction is almost always between 0° and 90°

Physics for Scientists and Engineers

A Strategic Approach with Modern Physics
 Third Edition by Randall D. Knight © 2013 by Pearson Education Inc.
 Chapter 3. Vectors and Coordinate Systems

- 3.4 Vector Algebra
- Please read pages 77 through 80

Unit Vectors

- Each vector in the figure to the right has a magnitude of 1 , no units, and is parallel to a coordinate axis
- A vector with these properties is called a unit vector
- These unit vectors have the special symbols

$$
\begin{aligned}
& \hat{\imath} \equiv(1, \text { positive } x \text {-direction }) \\
& \hat{\jmath} \equiv(1, \text { positive } y \text {-direction })
\end{aligned}
$$

- Unit vectors establish the directions of the positive axes of the coordinate system

Vector Algebra

- When decomposing a vector, unit vectors provide a useful way to write component vectors:

$$
\begin{aligned}
& \vec{A}_{x}=A_{x} \hat{\imath} \\
& \vec{A}_{y}=A_{y} \hat{\jmath}
\end{aligned}
$$

- The full decomposition of the vector \vec{A} can then be written

$\vec{A}=\vec{A}_{x}+\vec{A}_{y}=A_{x} \hat{\imath}+A_{y} \hat{\jmath}$

Tilted Axes and Arbitrary Directions

- For some problems it is convenient to tilt the axes of the coordinate system
- The axes are still perpendicular to each other, but there is no requirement that the x-axis

The components of \vec{C} are found with respect
 has to be horizontal

- Tilted axes are useful if you need to determine component vectors "parallel to" and "perpendicular to" an arbitrary line or surface

Try:

Stop To Think 3.4
(Answer is at the very end of the chapter.)
Work Through:
Examples 3.5 through 3.8

