PHY131H1F
 University of Toronto

Class 7 Preclass Video
by Jason Harlow

Based on Knight $3^{\text {rd }}$ edition

 Ch. 4, sections 4.1 to 4.4, pgs. 85-97
Acceleration

The average acceleration of a moving object is defined as the vector:

$$
\vec{a}_{\mathrm{avg}}=\frac{\Delta \vec{v}}{\Delta t}
$$

The acceleration \vec{a} points in the same direction as $\boldsymbol{\Delta} \overrightarrow{\boldsymbol{v}}$, the change in velocity
As an object moves, its velocity vector can change in two possible ways:

1. The magnitude of the velocity can change, indicating a change in speed, or
2. The direction of the velocity can change, indicating that the object has changed direction.

Tactics: Finding the acceleration vector
(3) Draw $\Delta \vec{v}=\vec{v}_{n+1}-\vec{v}_{n}$

$$
=\vec{v}_{n+1}+\left(-\vec{v}_{n}\right)
$$

This is the direction of \vec{a}.

(4) Return to the original motion diagram. Draw a vector at the middle point in the direction of $\Delta \vec{v}$; label it \vec{a}. This is the average acceleration between \vec{v}_{n} and \vec{v}_{n+1}.

Tactics: Finding the acceleration vector
TACTICS Finding the acceleration vector
To find the acceleration between velocity \vec{v}_{n} and velocity \vec{v}_{n+1} :

(1) Draw the velocity vector \vec{v}_{n+1}.

(2) Draw $-\vec{v}_{n}$ at the tip of \vec{v}_{n+1}.

Acceleration

- The figure to the right shows a motion diagram of Maria riding a Ferris wheel
- Maria has constant speed but not constant velocity, so she is accelerating.
- For every pair of adjacent velocity vectors, we can subtract them to find the average acceleration near that point

Acceleration

- At every point Maria's acceleration points toward the center of the circle.
- This is an acceleration due to changing direction, not to changing speed.

Section 4.2

Two-Dimensional Kinematics

- The instantaneous velocity is the limit of $\vec{v}_{\text {avg }}$ as $\Delta t \rightarrow 0$
- As shown the instantaneous velocity vector is tangent to the trajectory
- Mathematically:
$\vec{v}=\lim _{\Delta t \rightarrow 0} \frac{\Delta \vec{r}}{\Delta t}=\frac{d \vec{r}}{d t}=\frac{d x}{d t} \hat{\imath}+\frac{d y}{d t} \hat{\jmath}$ which can be written:

$$
\vec{v}=v_{x} \hat{\imath}+v_{y} \hat{\jmath}
$$

where: $v_{x}=\frac{d x}{d t} \quad$ and $\quad v_{y}=\frac{d y}{d t}$

Analyzing the acceleration vector

- An object's acceleration can
be decomposed into components parallel and

This component of \vec{a} is changing perpendicular to the velocity the direction of motion.

- $\vec{a}_{\|}$is the piece of the acceleration that causes the object to change speed
$-\vec{a}_{\perp}$ is the piece of the acceleration that causes the object to change direction
- An object changing direction always has a component of acceleration perpendicular to the direction of motion.

Two-Dimensional Kinematics

- The figure to the right shows the trajectory of a particle moving in the $x-y$ plane
- The particle moves from position \vec{r}_{1} at time t_{1} to position \vec{r}_{2} at a later time t_{2}
- The average velocity points in the direction of the displacement $\Delta \vec{r}$ and is
 $\vec{v}_{\mathrm{avg}}=\frac{\Delta \vec{r}}{\Delta t}=\frac{\Delta x}{\Delta t} \hat{\imath}+\frac{\Delta y}{\Delta t} \hat{\jmath}$

Two-Dimensional Kinematics

- If the velocity vector's angle θ is measured from the positive x-direction, the velocity components are

$$
\begin{aligned}
& v_{x}=v \cos \theta \\
& v_{y}=v \sin \theta
\end{aligned}
$$

where the particle's speed is

$$
v=\sqrt{v_{x}^{2}+v_{y}^{2}}
$$

- Conversely, if we know the velocity components, we can determine the direction of motion:

$$
\tan \theta=\frac{v_{y}}{v_{x}}
$$

Two-Dimensional Acceleration

- The figure to the right shows the trajectory of a particle moving in the $x-y$ plane
- The instantaneous velocity is \vec{v}_{1} at time t_{1} and \vec{v}_{2} at a later time t_{2}
- We can use vector subtraction to find $a_{\text {avg }}$ during the time interval $\Delta t=t_{2}-t_{1}$

Decomposing Two-Dimensional Acceleration

- The figure to the right shows the trajectory of a particle moving in the $x-y$ plane
- The acceleration \vec{a} is decomposed into components $\vec{a}_{\|}$ and \vec{a}_{\perp}
- $\vec{a}_{\| \mid}$is associated with a change in speed
- \vec{a}_{\perp} is associated with a change

of direction

- \vec{a}_{\perp} always points toward the "inside" of the curve because that is the direction in which \vec{v} is changing

Two-Dimensional Acceleration

- The instantaneous acceleration is the limit ${ }^{y}$ of $\vec{a}_{\text {avg }}$ as $\Delta t \rightarrow 0$.
- The instantaneous acceleration vector is shown along with the instantaneous velocity in the figure.
- By definition, \vec{a} is the rate at which \vec{v} is changing at that instant.

Decomposing Two-Dimensional Acceleration

- If v_{x} and v_{y} are the x - and y-components of velocity, then

$$
a_{x}=\frac{d v_{x}}{d t} \quad \text { and } \quad a_{y}=\frac{d v_{y}}{d t}
$$

Constant Acceleration

- If the acceleration $\vec{a}=a_{x} \hat{i}+a_{y} \hat{j}$ is constant, then the two components a_{x} and a_{y} are both constant
- In this case, everything from Chapter 2 about constantacceleration kinematics applies to the components
- The x-components and y-components of the motion can be treated independently
- They remain connected through the fact that Δt must be the same for both

$$
\begin{array}{ll}
x_{\mathrm{f}}=x_{\mathrm{i}}+v_{\mathrm{ix}} \Delta t+\frac{1}{2} a_{x}(\Delta t)^{2} & y_{\mathrm{f}}=y_{\mathrm{i}}+v_{\mathrm{iy}} \Delta t+\frac{1}{2} a_{y}(\Delta t)^{2} \\
v_{\mathrm{fx}}=v_{\mathrm{ix}}+a_{x} \Delta t & v_{\mathrm{fy}}=v_{\mathrm{iy}}+a_{y} \Delta t
\end{array}
$$

Projectile Motion

- Baseballs, tennis balls, Olympic divers, etc, all exhibit projectile motion
- A projectile is an object that moves in two dimensions under the influence of only gravity
- Projectile motion extends the idea of freefall motion to include a horizontal component of velocity
- Air resistance is neglected

- Projectiles in two dimensions follow a parabolic trajectory as shown in the photo

Projectile Motion

- Gravity acts downward
- Therefore, a projectile
$\begin{aligned} & \text { has no horizontal } \\ & \text { acceleration } \\ & \text { - Thus } \\ & a_{x}=0 \\ & \text { (projectile motion) } \\ & a_{y}=-g\end{aligned} \quad \begin{aligned} & \text { Parabolic } \\ & \text { trajectory }\end{aligned}$
v_{0}
- The vertical component of acceleration a_{y} is $-g$ of free fall
- The horizontal component of a_{x} is zero
- Projectiles are in free fall

Projectile Motion

- The start of a projectile's motion is called the launch
- The angle θ of the initial velocity v_{0} above the x-axis is called the launch angle

- The initial velocity vector can be broken into components

$$
\begin{aligned}
& v_{0 x}=v_{0} \cos \theta \\
& v_{0 y}=v_{0} \sin \theta
\end{aligned}
$$

where v_{0} is the initial speed

Reasoning About Projectile Motion

A heavy ball is launched exactly horizontally at height h above a horizontal field. At the exact instant that the ball is launched, a second ball is simply dropped from height h. Which ball hits the ground first?

- If air resistance is neglected, the balls hit the ground simultaneously
- The initial horizontal velocity of the first ball has no influence over its vertical motion
- Neither ball has any initial vertical motion, so both fall distance h in the same amount of time

Reasoning About Projectile Motion

A hunter in the jungle wants to shoot down a coconut that is hanging from the branch of a tree. He points his arrow directly at the coconut, but the coconut falls from the branch at the exact instant the hunter shoots the arrow. Does the arrow hit the coconut?

- Without gravity, the arrow would follow a straight line - Because of gravity, the arrow at time t has "fallen" a distance $1 / 2 g t^{2}$ below this line
- The separation grows as $1 / 2 g t^{2}$, giving the trajectory its parabolic shape

Reasoning About Projectile Motion

A hunter in the jungle wants to shoot down a coconut that is hanging from the branch of a tree. He points his arrow directly at the coconut, but the coconut falls from the branch at the exact instant the hunter shoots the arrow. Does the arrow hit the coconut?

- Had the coconut stayed on the tree, the arrow would have curved under its target as gravity cases it to fall a distance $1 / 2 g t^{2}$ below the straight line - But $1 / 2 g t^{2}$ is also the distance the coconut falls while the arrow is in flight

- So yes, the arrow hits the coconut!

PROBLEM-SOLVING STRATEGY 4.1 Projectile motion problems

model Make simplifying assumptions, such as treating the object as a particle. Is it reasonable to ignore air resistance?
visualize Use a pictorial representation. Establish a coordinate system with the x-axis horizontal and the y-axis vertical. Show important points in the motion on a sketch. Define symbols and identify what the problem is trying to find.
solve The acceleration is known: $a_{x}=0$ and $a_{y}=-g$. Thus the problem is one of two-dimensional kinematics. The kinematic equations are

$$
\begin{array}{ll}
x_{\mathrm{f}}=x_{\mathrm{i}}+v_{\mathrm{ix}} \Delta t & y_{\mathrm{f}}=y_{\mathrm{i}}+v_{\mathrm{iy}} \Delta t-\frac{1}{2} g(\Delta t)^{2} \\
v_{\mathrm{fx}}=v_{\mathrm{ix}}=\mathrm{constant} & v_{\mathrm{fy}}=v_{\mathrm{iy}}-g \Delta t
\end{array}
$$

Δt is the same for the horizontal and vertical components of the motion. Find Δt from one component, then use that value for the other component.
ASSESS Check that your result has the correct units, is reasonable, and answers the question.

Range of a Projectile

A projectile with initial speed v_{0} has a launch angle of θ above the horizontal. How far does it travel over level ground before it returns to the same elevation from which it was launched?

- This distance is sometimes called the range of a projectile
- Example 4.5 from your textbook shows:

$$
\text { distance }=\frac{v_{0}^{2} \sin (2 \theta)}{g}
$$

- The maximum distance

Trajectories of a projectile launched at different angles with a speed of $99 \mathrm{~m} / \mathrm{s}$.
 occurs for $\theta=45^{\circ}$

Section 4.4

Relative Motion

- The velocity of C relative to B is the velocity of C relative to A plus the velocity of A relative to B

- If B is moving to the right relative to A, then A is moving to the left relative to B
- Therefore, $\left(v_{x}\right)_{\mathrm{AB}}=-\left(v_{x}\right)_{\mathrm{BA}}$

Reference Frames

- A coordinate system in which an experimenter makes position measurements is called a reference frame
- In the figure, Object C is measured in two different reference frames, A and B
- \vec{r}_{CA} is the position of C relative to the origin of A
- \vec{r}_{CB} is the position of C relative to the origin of B
- \vec{r}_{AB} is the position of the origin of A relative to the origin of B

$$
\vec{r}_{\mathrm{CB}}=\vec{r}_{\mathrm{CA}}+\vec{r}_{\mathrm{AB}}
$$

Reference Frames

- Relative velocities are found as the time derivative of the relative positions

Object C can be located
relative to A or to B .

- $\vec{v}_{\text {CA }}$ is the velocity of C relative
to A
- \vec{v}_{CB} is the velocity of C relative ${ }^{y}$ to B
- \vec{v}_{AB} is the velocity of reference frame A relative to reference frame B

$$
\vec{v}_{\mathrm{CB}}=\vec{v}_{\mathrm{CA}}+\vec{v}_{\mathrm{AB}}
$$

- This is known as the Galilean transformation of velocity

