PHY131H1F
 University of Toronto

Class 12 Preclass Video
 by Jason Harlow

Based on Knight $3{ }^{\text {rd }}$ edition
Ch. 7, pgs. 167-184

Interacting Objects

- When a hammer hits a nail, it exerts a forward force on the nail
- At the same time, the nail exerts a backward force on the hammer
- If you don't believe it, imagine hitting the nail with a glass hammer
- It's the force of the nail on the hammer that would cause the glass to shatter!

Interacting Objects

- If object A exerts a force on object B, then object B exerts a force on object A.
- The pair of forces, as shown, is called an action/reaction pair.

Section 7.1

Objects, Systems and the Environment

- Chapters 5 and 6 considered forces acting on a single object, modeled as a particle
- The figure shows a diagram representing single-particle dynamics

This is a force diagram.

- We can use Newton's second law, $\vec{a}=\vec{F}_{\text {net }} / m$, to determine the particle's acceleration

Objects, Systems and the Environment

- For example, set:
- Object $\mathrm{A}=$ the hammer
- Object $\mathrm{B}=$ the nail
- Object $\mathrm{C}=$ the earth
- The earth interacts with both the hammer and the

Each line represents an interaction and an action/reaction pair of forces. Some pairs of objects, such as A and B, can have more than one interaction. naj viadidiny, the earth remains at rest while the hammer and the nail move

- Define the system as those objects whose motion we want to analyze
- Define the environment as objects external to the system

Objects, Systems and the Environment

- In this chapter we extend the particle model to include two or more objects that interact
- The figure shows three objects interacting via action/reaction pairs of forces

Each line represents an interaction and an action/reaction pair of forces. Some pairs of objects, such as A and B, can have more than one interaction.

- The forces can be given labels, such as $\vec{F}_{\mathrm{A} \text { on } \mathrm{B}}$ and $\vec{F}_{\mathrm{B} \text { on } \mathrm{A}}$

Objects, Systems and the Environment

- The figure shows a new kind of diagram, an interaction diagram
- The objects of the system are in a box
- Interactions are represented by lines connecting the objects

This is an interaction diagram.

- Interactions with objects in the environment are called external forces

Propulsion

- If you try to walk across a frictionless floor, your foot slips and slides backward
- In order to walk, your foot must stick to the floor as you straighten your leg, moving your body forward
- The force that prevents slipping is static friction
- The static friction force points in the forward direction
- It is static friction that propels you forward!

What force causes this sprinter to accelerate?

Examples of Propulsion

Examples of Propulsion

The rocket pushes the hot gases backward. The gases push the rocket forward. Thrust force.

Newton's Third Law

- Every force occurs as one member of an action/reaction pair of forces
- The two members of an action/reaction pair act on two different objects
- The two members of an action/reaction pair are equal in magnitude, but opposite in direction:

$$
\vec{F}_{\mathrm{A} \text { on } \mathrm{B}}=-\vec{F}_{\mathrm{B} \text { on } \mathrm{A}}
$$

- A catchy phrase, which is less precise, is:
"For every action there is an equal but opposite reaction."

Examples of Propulsion

Reasoning with Newton's Third Law

- When you release a ball, it falls down
- The action/reaction forces of the ball and the earth are equal in magnitude
- The acceleration of the ball is

$$
\vec{a}_{\mathrm{B}}=\frac{\left(\vec{F}_{\mathrm{G}}\right)_{\mathrm{B}}}{m_{\mathrm{B}}}=-g \hat{\jmath}
$$

- The acceleration of the earth is

$$
\vec{a}_{\mathrm{E}}=\frac{\vec{F}_{\text {ball on carth }}}{m_{\mathrm{E}}}=\frac{m_{\mathrm{B}} g \hat{\jmath}}{m_{\mathrm{E}}}=\left(\frac{m_{\mathrm{B}}}{m_{\mathrm{E}}}\right) g \hat{\jmath}
$$

- If the ball has a mass of 1 kg , the earth accelerates upward at $2 \times 10^{-24} \mathrm{~m} / \mathrm{s}^{2}$

Acceleration Constraints

- If two objects A and B move together, their accelerations are constrained to be equal: $a_{\mathrm{A}}=a_{\mathrm{B}}$
- This equation is called an acceleration constraint
- Consider a car being towed by a truck
- In this case, the
acceleration constraint is
$a_{\mathrm{C} x}=a_{\mathrm{T} x}=a_{x}$

- Because the accelerations of both objects are equal, we can drop the subscripts C and T and call both of them a_{x}

Acceleration Constraints

- But, as A moves to the right in the $+x$ direction, B moves down in the $-y$ direction
- In this case, the acceleration constraint is $a_{\mathrm{A} x}=-a_{\mathrm{B} y}$

Tension Revisited

The Massless String Approximation

- Often in problems the mass of the string or rope is much less than the masses of the objects that it connects.
- In such cases, we can adopt the following massless string approximation:

$$
T_{\mathrm{B} \text { on } \mathrm{S}}=T_{\mathrm{A} \text { on } \mathrm{S}} \quad \text { (massless string approximation) }
$$

The Massless String Approximation

- Two blocks are connected by a massless string, as block B is pulled to the right - Forces $\vec{T}_{\text {Son A }}$ and $\vec{T}_{\text {Son B }}$ ac as if they are an action/reaction pair:

$$
\vec{T}_{\mathrm{S} \text { on } \mathrm{A}}=-\vec{T}_{\mathrm{S} \text { on } \mathrm{B}}
$$

We can omit the string if
we assume it is massless.

- All a massless string does is transmit a force from A to B without changing the magnitude of that force
- For problems in this book, you can assume that any strings or ropes are massless unless it explicitly states otherwise

Pulleys

- Block B drags block A across a frictionless table as it falls
- The string and the pulley are both massless
- There is no friction where the pulley turns on its axle
- Therefore, $T_{\text {A on S }}=T_{\mathrm{B} \text { on } \mathrm{S}}$

Pulleys

- Since $T_{\mathrm{A} \text { on B }}=T_{\mathrm{B} \text { on A }}$, we can draw the simplified free-body diagram on the right, below
- Forces $\vec{T}_{\mathrm{A} \text { on } \mathrm{B}}$ and $\vec{T}_{\mathrm{B} \text { on A }}$ act as if they are in an action/reaction pair, even though they are not opposite in direction because the tension force gets "turned" by the pulley

