physics

FOR SCIENTISTS AND ENGINEERS

Dynamics in Two Dimensions

- Suppose the x - and y-components of acceleration are independent of each other.
- That is, a_{x} does not depend on y or v_{y}, and a_{y} does not depend on x or v_{x}.
- Your problem-solving strategy is to:

1. Draw a pictorial representation: a motion diagram (if needed) and a free-body diagram.
2. Use Newton's second law in component form:
$\left(F_{\text {net }}\right)_{x}=\sum F_{x}=m a_{x} \quad$ and $\quad\left(F_{\text {net }}\right)_{y}=\sum F_{y}=m a_{y}$
The force components (including proper signs) are found from the free-body diagram

Projectile Motion: Review

- In the absence of air resistance, a projectile moves under the influence of only gravity.
- If we choose a coordinate system with a vertical
 y-axis, then

$$
\vec{F}_{\mathrm{G}}=-m g \hat{\jmath}
$$

- Consequently, from Newton's second law, the acceleration is

$$
\begin{aligned}
& a_{x}=\frac{\left(F_{\mathrm{G}}\right)_{x}}{m}=0 \\
& a_{y}=\frac{\left(F_{\mathrm{G}}\right)_{y}}{m}=-g
\end{aligned}
$$

Chapter 8. Dynamics II: Motion in a Plane

Chapter Goal: To learn how to solve problems about motion in a plane.

Dynamics in Two Dimensions

3. Solve for the acceleration. If the acceleration is constant, use the two-dimensional kinematic equations of Chapter 4 to find velocities and positions:

$$
\begin{array}{ll}
x_{\mathrm{f}}=x_{\mathrm{i}}+v_{\mathrm{ix}} \Delta t+\frac{1}{2} a_{x}(\Delta t)^{2} & y_{\mathrm{f}}=y_{\mathrm{i}}+v_{\mathrm{iy}} \Delta t+\frac{1}{2} a_{y}(\Delta t)^{2} \\
v_{\mathrm{fx}}=v_{\mathrm{ix}}+a_{x} \Delta t & v_{\mathrm{fy}}=v_{\mathrm{iy}}+a_{y} \Delta t
\end{array}
$$

Projectile Motion: Review

- Consider a projectile with initial speed v_{0}, and a launch angle of θ above the horizontal.
- In Chapter 4 we found that the distance it travels before it returns to the same elevation from which it was launched (the range) is:

$$
\text { distance }=\frac{v_{0}^{2} \sin (2 \theta)}{g}
$$

- The maximum range occurs for $\theta=45^{\circ}$.
- All of these results neglect the effect of air resistance.

Projectile Motion with Air Resistance (Drag)

- For low-mass projectiles on earth, the effects of air resistance, or drag, are too large to ignore.
- When drag is included, the angle for maximum range of a projectile depends both on its size and mass.
- The optimum angle is roughly
 35° for baseballs.
- The flight of a golf ball is even more complex, because of the dimples and effects of spin.
- Professional golfers achieve their maximum range at launch angles of barely 15° !

Uniform Circular Motion

A Coordinate System for Circular Motion

Dynamics of Uniform Circular Motion

- An object in uniform circular motion is not traveling at a constant velocity in a straight line.
- Consequently, the particle must have a net force acting on it

$$
\vec{F}_{\text {net }}=m \vec{a}=\left(\frac{m v^{2}}{r}, \text { toward center of circle }\right)
$$

- Without such a force, the object would move off in a straight line tangent to the circle.
- The car would end up in the ditch!

Projectile Motion with Air Resistance (Drag)

- The acceleration of a typical projectile subject to drag force from the air is:

$$
\begin{aligned}
& a_{x}=-\frac{\rho C A}{2 m} v_{x} \sqrt{v_{x}^{2}+v_{y}^{2}} \\
& a_{y}=-g-\frac{\rho C A}{2 m} v_{y} \sqrt{v_{x}^{2}+v_{y}^{2}}
\end{aligned}
$$

- The components of acceleration are not independent of each other.
- These equations can only be solved numerically.
- The figure shows the numerical solution for a 5-g plastic ball.

Uniform Circular Motion

- A particle in uniform circular motion with angular velocity ω has velocity $v=\omega r$, in the tangential direction.
- The acceleration of uniform circular motion points to the center of the circle.
- The rtz-components of \vec{v}
 and \vec{a} are:

$$
\begin{array}{ll}
v_{r}=0 & a_{r}=\frac{v^{2}}{r}=\omega^{2} r \\
v_{t}=\omega r & a_{t}=0 \\
v_{z}=0 & a_{z}=0
\end{array}
$$

Dynamics of Uniform Circular Motion

- The figure shows a particle in uniform circular motion.
- The net force must point in the radial direction, toward the center of the circle.
- This centripetal force is not a new force; it must be provided by familiar forces.

$$
\begin{aligned}
& v_{r}=0 \\
& v_{t}=\omega r \\
& v_{z}=0
\end{aligned}
$$

$$
a_{r}=\frac{v^{2}}{r}=\omega^{2} r
$$

$$
a_{t}=0
$$

$$
a_{z}=0
$$

Banked Curves

- Real highway curves are banked by being tilted up at the outside edge of the curve.
- The radial component of the normal force can provide centripetal acceleration needed to turn the car.

Banked Curves

Banked Curves

- For a curve of radius r banked at an angle θ, the exact speed at which a car must take the curve without assistance from friction is

$$
v_{0}=\sqrt{r g \tan \theta}
$$

Banked Curves

- Consider a car going around a banked curve at a speed slower than $v_{0}=\sqrt{r g \tan \theta}$.
- In this case, static friction must prevent the car from slipping down the hill.

Circular Orbits

- The figure shows a perfectly smooth, spherical, airless planet with one tower of height h
- A projectile is launched parallel to the ground with speed v_{0}
- If v_{0} is very small, as in trajectory A , it simply falls to the ground along a parabolic trajectory
- This is the "flat-earth approximation"

Circular Orbits

- In the flat-earth approximation, shown in figure (a), the gravitational force on an object of mass m is:
$\vec{F}_{\mathrm{G}}=(m g$, vertically downward $)$

(b)

Circular Orbits

- As the initial speed v_{0} is increased, the range of the projectile increases as the ground curves away from it.
- Trajectories B and C are of this type.
- If v_{0} is sufficiently large, there comes a point where the trajectory and the curve of the earth are parallel.

D This projectile "falls" all the way around the planet because the curvature of its trajectory matches

- In this case, the projectile the planet's curvature. "falls" but it never gets any closer to the ground!
- This is trajectory D, called an orbit.

Circular Orbits

- An object in a low circular orbit has acceleration:

$$
\vec{a}=\frac{\vec{F}_{\text {net }}}{m}=(g, \text { toward center })
$$

- If the object moves in a circle of radius r at speed $v_{\text {orbit }}$ the centripetal acceleration is:

$$
a_{r}=\frac{\left(v_{\text {orbit }}\right)^{2}}{r}=g
$$

- The required speed for a circular orbit near a planet's surface, neglecting air resistance, is:

$$
v_{\text {orbit }}=\sqrt{r g}
$$

Circular Orbits

- The period of a low-earth-orbit satellite is:

$$
T=\frac{2 \pi r}{v_{\text {orbit }}}=2 \pi \sqrt{\frac{r}{g}}
$$

- If r is approximately the radius of the earth $R_{\mathrm{e}}=6400 \mathrm{~km}$, then T is about 90 minutes.
- An orbiting spacecraft is constantly in free fall, falling under the influence only of the gravitational force.
- This is why astronauts feel weightless in space.

