## PHY131H1F - Class 10 Today, Chapter 6:

- Equilibrium
- Mass, Weight, Gravity



## Clicker Question

Which of the following objects described below is in dynamic equilibrium?
A. A 100 kg barbell is held at rest over your head.
B. A steel beam is lifted upward at constant speed by a crane.

C. A baseball is flying through the air and air resistance is negligible.
D. A steel beam is being lowered into place. It is slowing down.
E. A box in the back of a truck doesn't slide as the truck is slowing down.


## Last day I asked at the end of class:

- When astronauts are floating in a space station, are they really weightless?
- ANSWER: YES!
- Knight's definition of weight means the amount of force needed to support an object in your frame of reference.



## $\triangle$ WARNING

- Newton's Laws only apply in a "inertial reference frames". They are not valid if your reference frame is accelerating!
- An inertial reference frame is one that is not accelerating.


## Clicker Question

- A car is driving at a steady speed on a straight and level road.

Quick quiz [1/4]: inside the car, is it...

A: Inertial Reference Frame
B: Not an inertial reference frame

Clicker Question

- A car is driving at a steady speed up a $10^{\circ}$ incline.

Quick quiz [2/4]: inside the car, is it...

A: Inertial Reference Frame
B: Not an inertial reference frame

Clicker Question

- A car is speeding up after leaving a stop sign, on a straight and level road.

Quick quiz [3/4]: inside the car, is it...

A: Inertial Reference Frame
B: Not an inertial reference frame

Clicker Question

- A car is driving at a steady speed around a curve on a level road.

Quick quiz [4/4]: inside the car, is it...

A: Inertial Reference Frame
B: Not an inertial reference frame

## Equilibrium <br> $\Sigma \vec{F}=0$

- An important problem solving technique is to identify when an object is in equilibrium.
- An object has zero acceleration if and only if the net force on it is zero.
- This is called "equilibrium".
- If an object is in vertical equilibrium (ie it is confined to a stationary horizontal surface) then $\left(F_{\text {net }}\right)_{y}=0$. The sum of $y$-components of all forces $=0$.
- If an object is in horizontal equilibrium (ie freefall) then $\left(F_{\text {net }}\right)_{x}=0$.



## Gravity for the universe

It was Newton who first recognized that gravity is an attractive, long-range force between any two objects. Somewhat more loosely, gravity is a force that acts on
 mass. When two objects with masses $m_{1}$ and $m_{2}$ are separated by distance $r$, each object pulls on the other with a force given by Newton's law of gravity, as follows:

$$
F_{1 \text { on } 2}=F_{2 \text { on } 1}=\frac{G m_{1} m_{2}}{r^{2}} \quad(\text { Newton's law of gravity })
$$

(Sometimes called "Newton's $4^{\text {th }}$ Law", or
"Newton's Law of Universal Gravitation")

## Gravity Example

A mass, $m$, rests on the surface a giant spherical rock which is floating in space.
The giant rock has a mass of $6 \times 10^{24}$ kg and a radius of 6400 km .
(a) What is the force of gravity on the mass due to the giant rock?
(b) Can you think of a good name for this giant rock?

## Gravity for Earthlings

If you happen to live on the surface of a large planet with radius $R$ and mass $M$, you can write the gravitational force more simply as

$$
\left.\vec{F}_{\mathrm{G}}=(m g, \text { straight down }) \quad \text { (gravitational force }\right)
$$

where the quantity $g$ is defined to be:

$$
g=\frac{G M}{R^{2}}
$$

At sea level, $g=9.83 \mathrm{~m} / \mathrm{s}^{2}$.
At 39 km altitude, $g=9.71 \mathrm{~m} / \mathrm{s}^{2}$.


# Gravity: $F_{\mathrm{G}}=m g$ is just a short form! 

$$
\begin{gathered}
F_{1 \text { on } 2}=F_{2 \text { on } 1}=\frac{G m_{1} m_{2}}{r^{2}} \\
\text { and } \\
\vec{F}_{\mathrm{G}}=(\mathrm{mg}, \text { straight down })
\end{gathered}
$$

are the same equation, with different notation!
The only difference is that in the second equation we have assumed that $m_{2}=M$ (mass of the earth) and $r \approx R$ (radius of the earth).

## Weight $=$ Weight ??!?

- Physicists do not all agree on the definition of the word "weight"!
- Sometimes "weight" means the exact same thing as "force of gravity". That is not how Randall Knight uses the word.

- In Knight, "weight" means the magnitude of the upward force being used to support an object.
- If the object is at rest or moving at a constant velocity relative to the earth, then the object is in equilibrium. The upward supporting force exactly balances the downward gravitational force, so that weight $=m g$.


## Clicker Question

- When I stand on a scale in my bathroom it reads 185 pounds. 2.2 pounds $=9.8$ Newtons, so this means the upward force on my feet when I am standing still is $185 \mathrm{lbs}(9.8 \mathrm{~N} / 2.2$ $\mathrm{lbs})=824 \mathrm{~N}$.
- If I ride an elevator which is accelerating upward at $1.5 \mathrm{~m} / \mathrm{s}^{2}$, what is the upward force on my feet?
- With no calculations, take a wild guess from this list:
A. 824 N
B. 950 N
C. 698 N
D. 0 N
E. -824 N


## Knight's Definition of weight

## Eq. 6.10, page 147:

The weight of an object is the reading of a calibrated spring scale on which the object is stationary. Weight is the result of weighing. The weight of an object with vertical acceleration $a_{y}$ is

$$
w=m g\left(1+\frac{a_{y}}{g}\right)
$$

## Clicker Question

## Spring scale on an elevator

You are attempting to pour out 1.0 kg of flour, using a kitchen scale on an elevator which is accelerating upward at $1.5 \mathrm{~m} / \mathrm{s}^{2}$.
The amount of flour you pour will be
A. too much.
B. too little.
C. the correct amount.


Clicker Question

## Pan balance on an elevator

You are attempting to pour out 100 g of salt, using a pan balance on an elevator which is accelerating upward at $1.5 \mathrm{~m} / \mathrm{s}^{2}$. Will the amount of salt you pour be
A. Too much
B. Too little
C. The correct amount

## Self-adjusting forces

- Gravity, $F_{\mathrm{G}}$, has an equation for it which predicts the correct magnitude (it's always $m g$ here on Earth).
- Normal force, Tension and Static friction are all selfadjusting forces: there is no equation for these!!
- Normal force is whatever is needed to keep the object from crashing through the surface.
- Tension is whatever is needed to keep the string or rope from breaking.
- Static friction is whatever is needed to keep the object from slipping along the surface.
- In all these cases, you must draw a free-body diagram and figure out by using equilibrium and Newton's $2^{\text {nd }}$ law what the needed force is.


## Getting the piano on the truck

- A piano has a mass of 225 kg .

1. What force is required to push the piano upwards at a constant velocity as you lift it into the back of a truck?

- A piano has a mass of 225 kg .

2. What force is required to push the piano up a frictionless ramp at a constant velocity into the truck? Assume the ramp is 3.00 m long and the floor of the truck is 1.00 m high?

## Clicker Question

Bob stands under a low concrete arch, and presses upwards on it with a force of 100 N . Bob's mass is 82 kg . He is in equilibrium. What is the total normal force of the ground on Bob? (Note that $82 \times 9.8=800$.)

A. 800 N, upward
B. 800 N, downward
C. 900 N, upward
D. 700 N, upward
E. 900 N, downward

## Before Class 11 next Wednesday

- Please finish reading Chapter 6
- Problem Set 4 is due Sunday night.
- Please read the rest of Knight Chapter 6.
- Something to think about:

Does friction always slow things down? Can friction ever speed things up?

Happy Thanksgiving!


