PHY131H1S
Test 2 -versio nt Solutions Tuesday, March 16, 2010

1. A string is attached to the rear-view mirror of a car. A ball is hanging on the other end of the string. The car is driving along a circular path, at a constant speed. Which of the following lists gives all of the forces directly acting on the ball?
A. tension
B. tension and gravity
C. tension and centripetal force
D. tension, gravity and centripetal force
E. tension, gravity, centripetal force and friction

2. Block 1, of mass $m_{1}=1.0 \mathrm{~kg}$, is connected over an ideal (massless and frictionless) pulley to block 2 , of mass $m_{2}=$ 0.25 kg , as shown. Assume that the blocks accelerate as shown with an acceleration of magnitude a, and that the coefficient of kinetic friction between block 2 and the plane is $\mu=0.20$. The velocity of each block at this moment is in the same direction as its acceleration. The angle of the incline is $\theta=30.0^{\circ}$. What is the magnitude of the acceleration, a ?
A. $4.9 \mathrm{~m} / \mathrm{s}^{2}$
(B) $6.5 \mathrm{~m} / \mathrm{s}^{2} \quad$ food for
C. $6.9 \mathrm{~m} / \mathrm{s}^{2}$
D. $8.2 \mathrm{~m} / \mathrm{s}^{2}$
E. $9.7 \mathrm{~m} / \mathrm{s}^{2}$
flo poor

fld for \rightarrow

$$
\left(F_{N e t}\right) y=0=n+0+0-m_{2} g \cos \theta
$$

$$
\begin{aligned}
& \begin{array}{l}
n=m_{2} g \cos \theta \\
a=0+T-\mu_{k} m_{2} g \cos \theta-m_{2} g \sin \theta
\end{array} \\
& m_{2} a=\frac{\downarrow}{T}-m_{2} g\left(\mu_{k} \cos \theta+\sin \theta\right) \\
& m_{2} a=m_{1} g-m_{1} a-m_{2} g\left(\mu_{k} \cos \theta+\sin \theta\right) \\
& \left.\left(m_{2}+m_{1}\right) a=m_{1} g-m_{2} g l \quad "\right) \\
& a=g\left[\frac{m_{1}-m_{2} \mu_{k} \cos \theta-m_{2} \sin \theta}{m_{1}+m_{2}}\right] \\
& a=9.8 m / s^{2}\left[\frac{-(0.25)(0.2) \cos 36^{\circ}-0.25 \sin 30}{1.25}\right] \\
& =6.52 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

3. A concrete highway with a curve of radius 70.0 m is banked at a 15° angle. A car of total mass 1400 kg drives around this curve at a constant speed of $21 \mathrm{~m} / \mathrm{s}$. It has rubber wheels, and they do
not slip. What is the magnitude of the force of static friction on the car?
(A. 5000 N
B. 8800 N
C. 3800 N
D. 3600 N
E. $13,000 \mathrm{~N}$
assume $\overrightarrow{f_{s}}$
is down hill for positive f_{s}.
f.bd of car;

$$
\begin{aligned}
& \left(F_{\text {vet }}\right)_{y}=0=n \cos \theta-f_{s} \sin \theta-m g \\
& \left(F_{\text {Net }}\right)_{x}=\frac{m v^{2}}{r}=f_{s} \cos \theta+n \sin \theta
\end{aligned}
$$

2 unknowns: f_{s}, n, \rightarrow eliminate

$$
(1) \rightarrow n=\frac{m g+f, \sin \theta}{\cos \theta}
$$

plug into (2): $\frac{m v^{2}}{r}=f_{s} \cos \theta+\frac{\sin \theta}{\cos \theta}\left[m g+f_{s} \sin \theta\right]$

$$
\begin{gathered}
f_{s \text { max }}=\mu_{s} n \\
\text { rubber on } \\
\text { concrete: } \\
\mu_{s}=1.0 \\
\text { eq(1) gives } n: \\
f_{\text {sax }}=1.0(n) \\
f_{\text {sax }}=15,500 N \\
f_{s}<f_{\text {sax }} \\
\text { okay }
\end{gathered}
$$

$$
\frac{m v^{2}}{r}-m g \tan \theta=f_{s} \cos \theta+f_{s} \frac{\sin ^{2} \theta}{\cos \theta}
$$

$$
\begin{aligned}
f_{s} & =\frac{1}{\cos \theta+\frac{\sin ^{2} \theta}{\cos \theta}}\left[\frac{m v^{2}}{v}-m g \tan \theta\right] \\
& =\frac{1}{\cos 15+\frac{(\sin 15)^{2}}{\cos 15}}\left[\frac{1400(21)^{2}}{70 m}-1400(9.8) \tan 15\right]
\end{aligned}
$$

$$
f_{s}=4968 \mathrm{~N}
$$

4. Three identical balls slide on a table and hit a block that is fixed to the table. In the figures we are looking down from above. In each case the ball is going at the same speed before it hits the block. Each collision takes the same amount of time. Rank the magnitudes of the forces exerted on the block by each ball.
(A.) $F_{1}>F_{2}>F_{3}$ Impulse -momentum
B. $F_{1}>F_{2}=F_{3}$
C. $F_{1}<F_{2}<F_{3}$
D. $F_{1}<F_{2}=F_{3}$
E. $F_{1}=F_{2}=F_{3}$
5.

2.

3.

$$
\begin{aligned}
& 2 p_{i} \mid=2 p_{i}=1 \\
& \left|F_{1}\right|=2 \frac{p_{i}}{\Delta t}
\end{aligned}
$$

2. $\vec{p}_{f} M \mathbb{N} \vec{p} \quad p_{f y}=p_{i x}, p_{f x}=0$
3. $\quad p_{f}=-p_{0} \quad|\Delta p|=-p_{i}-p_{i}=\left|-2 p_{i}\right|=2 p_{i}=\left|F_{i}\right| 0 t$
4. $\underset{p_{f}}{\vec{p}_{i}} \underset{\overrightarrow{P_{i}}}{\vec{r}}$

$$
|\Delta p|=\left|\vec{p}_{f}-\vec{p}_{i}\right|=\sqrt{p_{i}^{2}+p_{i}^{2}}=\sqrt{2} p_{i}=\left|F_{2}\right| \Delta t
$$

$$
\left|F_{2}\right|=\sqrt{2} \frac{p_{1}}{\Delta t}
$$

3. $f_{t}=0$

$$
\begin{gathered}
\Delta p=p_{i}=\left|F_{3}\right| \Delta t \\
\left|F_{3}\right|=\frac{\rho_{i}}{\Delta t} \\
2>\sqrt{2}>1 \\
F_{1}>F_{2}>F_{3}
\end{gathered}
$$

5. On a frictionless horizontal air table, puck A (with mass $m_{\mathrm{A}}=0.25 \mathrm{~kg}$) is moving toward puck B (with mass $m_{\mathrm{B}}=0.40 \mathrm{~kg}$), which is initially at rest. After the collision, puck A has velocity 0.13 m / s, to the left, and puck B has velocity $0.65 \mathrm{~m} / \mathrm{s}$ to the right. How much energy is lost from the system during the collision?
A. 0 J Before: $A \quad V_{A i}=$?
B. 0.017 J Before
\qquad
0.25 kg
$V_{B i}=0$
0.40 kg
D. 0.082 J After.
E. 0.91 J Af

Note N_{0} Net external force $\Rightarrow \vec{p}_{f}=\vec{p}_{i}$

$$
\begin{aligned}
& m_{A} V_{A f}+m_{B} V_{B f}=m_{A} V_{A i}+0 \\
& \text { solve for } V_{A i}: \\
& V_{A i}=\frac{1}{m_{A}}\left(m_{A} V_{A f}+m_{B} V_{B f}\right) \\
&=\frac{1}{0.25}(0.25(-0.13)+0.4(+0.65))
\end{aligned}
$$

$V_{A i}=+0.91 \mathrm{~m} / \mathrm{s} \quad[$ th the right]
find kinetic energy:

$$
\begin{aligned}
& k_{i}=\frac{1}{2} m_{A} V_{A D}^{2}+0=\frac{1}{2} 0.25(0.91)^{2} \\
&=0.1035 \mathrm{~J} \\
& k_{f}=\frac{1}{2} m_{A} V_{A f}^{2}+\frac{1}{2} m_{B} V_{B f}^{2} \quad \\
&=\frac{1}{2} 0.25(-0.13)^{2}+\frac{1}{2} 0.4(0.65)^{2}=0.08661 \mathrm{~J} \\
& \text { less } \rightarrow \text { energy is } \\
& \text { 103+... } \\
& \Delta K=k_{f}-k_{i}= 0.08661-0.1035 \\
&=-0.0169 \mathrm{~J} \\
&|0 \mathrm{~K}|=0.017 \mathrm{~J}
\end{aligned}
$$

PHY131H1S

Test 2 -version 1 Solutions Tuesday, March 16, 2010
6. Two forces, of magnitudes F_{1} and F_{2}, act in opposite directions on a block, which sits atop a frictionless surface, as shown in the figure. Initially, the centre of the block is at position x_{i}. At some later time, the block has moved to the right, and its centre is at a new position, x_{f}. What is the change in the kinetic energy, ΔK, of the block as it moves from x_{i} to x_{f} ?
A. zero
B. $\left(F_{1}-F_{2}\right)\left(x_{\mathrm{f}}-x_{\mathrm{i}}\right)$
C. $\left(F_{2}-F_{1}\right)\left(x_{\mathrm{f}}-x_{\mathrm{i}}\right)$
D. $\left(F_{1}+F_{2}\right)\left(x_{\mathrm{f}}-x_{\mathrm{i}}\right)$
E. impossible to determine without knowing the mass of the block

$$
\begin{array}{r}
\text { Work - Kinetic Energy The oren: } \\
\qquad K=W_{\text {Net }}=\vec{F}_{\text {Net }} \cdot o \vec{r} \\
\Delta \overrightarrow{F_{\mathrm{f}}} \\
F_{\text {Net }}=F_{f}-F_{2} \quad(\text { to the } \\
\theta=x_{i} \quad(\text { to the right }) \\
W_{\text {Net }}=\left(F_{1}-F_{2}\right)\left(x_{f}-x_{0}\right)
\end{array}
$$

PHY131H1S

Test 2 -versio ns Solutions Tuesday, March 16, 2010
7. Here is a complete python code:

$$
\begin{aligned}
& \mathrm{t}=0 \\
& \mathrm{dt}=1 \\
& \text { while } \mathrm{t}<3: \\
& \text { print } \mathrm{t} \\
& \mathrm{t}=\mathrm{t}+\mathrm{dt}
\end{aligned}
$$

What is the output of this code?

13. $\frac{1}{2}$

E.

0
1
2
3

print $t=1$ set tこと third time $2<3$
print $t=2$
set $t=3$
fourth time 3 is
not $<3 \rightarrow$
It op breaks, \rightarrow end.

PHY131H1S
Test 2 -version 1 Solutions Tuesday, March 16, 2010
8. A ping pong ball is a spherical shell, for which the moment of inertia is given by $(2 / 3) M R^{2}$. A particular ping pong ball is rolling without slipping along the floor at a speed of $1.0 \mathrm{~m} / \mathrm{s}$. Its mass is $M=0.0027 \mathrm{~kg}$ and its radius is $R=0.020 \mathrm{~m}$. What is the total kinetic energy (rotational plus linear) of the ball as it rolls, in milli-Joules [mJ]?
A. 2.3
B. 0.90
C. 1.4
D. 0
E. 2.7

$$
V=1.0 \mathrm{~m}
$$

$$
\text { linear: } K=\frac{1}{2} m v^{2}=\frac{1}{2}(0.0027) 1^{2}
$$

$$
K=0.00135 \mathrm{~J}
$$

$$
=1.35 \mathrm{~mJ}
$$

$$
\begin{aligned}
& \text { rolling without slipping: } V=w R \\
& \rightarrow w=\frac{v}{R} \text { rotational } \\
& K_{r}=\frac{1}{2} I \omega^{2}=\frac{1}{4}\left(\frac{2}{3} M R^{2}\right)\left(\frac{v}{R}\right)^{2} \\
&= \frac{1}{3} M v^{2}=0.90 \mathrm{~mJ} \\
& \text { total: } \quad 1.35+0.90=2.26 \mathrm{~mJ} \\
& \sim 2.3
\end{aligned}
$$

PART A (6 points)
It's a snowy day and you're pulling a friend along a level road on a sled. The sled and your friend together have a total mass of 55 kg . As you walk, you are pulling up and forward on the sled with a rope that is angled at 35° above the horizontal. If you pull with a force of 95 N , you can cause the sled to accelerate along the flat road at $0.71 \mathrm{~m} / \mathrm{s}^{2}$. What is the coefficient of kinetic friction between the sled and the road?
[Please write your final answer in the box provided, and express your answer to 2 significant figures.]

$a_{x}=-0.71 \mathrm{~m} / \mathrm{s}$ $a_{y}=0$
find μ_{k}

solve for μ_{k} :

$$
M_{k} n=m a_{x}+T \cos \theta
$$

$$
\left.\mu_{k}=\frac{m a_{x}+T \cos \theta}{n} \right\rvert\, n=484.5 N
$$

$$
\mu_{k}=\frac{55(-0.71)+95(\cos 35)}{484.5}=0.080
$$

$$
\mu_{k}=0.080
$$

PART B (6 points)
A 0.057 kg tennis ball is dropped from rest, a height of 1.3 m above the surface of a bathroom scale. It bounces off the scale and returns to a final height of 1.1 m before stopping again. The scale measures the upward normal force on the tennis ball in Newtons, as shown in the plot. What is Δt, the duration of the collision of the tennis ball with the scale?
[Please write your final answer in the box provided, and express your answer to 2 significant figures.]

$$
\begin{equation*}
3 \text { segments: the fall, } \tag{1}
\end{equation*}
$$

the coilision(2) and the rise.
Seq. 1: $\quad v_{i}=0,-g=a_{y}$

$$
\begin{gathered}
v_{f}^{2}=x_{i}^{2}+2 a_{y} y \\
y \\
y=-1.3 \mathrm{~m} \\
v_{f}=\sqrt{2(-9.8)(-1.3)}=-5.048 \mathrm{~m} / \mathrm{s}
\end{gathered}
$$

firal for seq. 1 becomes initial for seg. 2.

$$
\begin{gathered}
v_{i}(\text { collision })=5.048 \mathrm{~m} / \mathrm{s} \text {) down } \\
\hline \text { Seg.3 } \quad v_{i}=2, \text { positive. } y=1.1 \mathrm{~m} \\
v_{f}=0 \quad V_{i}^{2}=v_{i}^{2}+2 a_{y} y \\
v_{i}^{2}=-2 a_{y y} \\
v_{i}=\sqrt{-2(-9.8)(1.1}=4.643 \mathrm{~m} / \mathrm{s}, \mathrm{me}
\end{gathered}
$$

initial for seq. 3 was final for seg. 2 .

$$
\begin{gathered}
\text { Collision (seg2) } \quad v+(\text { collision })=4.643 \mathrm{~m} / \mathrm{s}) \text { up } \\
\Delta p=m \Delta v=0.057 \mathrm{~kg}(4.643-(-5.048)) \mathrm{m} / \mathrm{s} \\
\Delta p=+0.5524 \frac{\mathrm{kgm}}{\mathrm{~s}}
\end{gathered}
$$

$$
\begin{aligned}
& \text { Area ot triangle: } \\
& \frac{1}{2} \text { base } \times \text { height }=\frac{1}{2}\left(F_{\text {max }}\right) \Delta t \\
& =A t
\end{aligned}
$$

$$
\Delta t=0.031 \mathrm{~s}
$$

$$
\begin{aligned}
\Delta \rho=J & =\frac{F_{\text {max }} \Delta t}{2} \\
\Delta t & =\frac{2 \Delta p}{F_{\text {max }}}=\frac{2(0.5524)}{36}=0.0306 \mathrm{~s}
\end{aligned}
$$

