
\qquad
\qquad
\qquad
\qquad

Pre-class Reading Quiz. (Chapter 3) \qquad What is a vector?
A. A quantity having both magnitude and direction
B. The rate of change of velocity
C. A number defined by an angle and a magnitude \qquad
D. The difference between initial and final displacement
E. None of the above
\qquad
\qquad
\qquad

Pre-class Reading Quiz. (Chapter 4) \qquad

You are running toward the right at $5 \mathrm{~m} / \mathrm{s}$ \qquad toward an elevator that is moving up at $2 \mathrm{~m} / \mathrm{s}$. Relative to you, the direction and magnitude
\qquad of the elevator's velocity are \qquad
A. down and to the right, less than $2 \mathrm{~m} / \mathrm{s}$.
B. up and to the left, less than $2 \mathrm{~m} / \mathrm{s}$.
C. up and to the left, more than $2 \mathrm{~m} / \mathrm{s}$.
D. up and to the right, less than $2 \mathrm{~m} / \mathrm{s}$. \qquad
E. up and to the right, more than $2 \mathrm{~m} / \mathrm{s}$.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Recall demonstration from last class:

- Harlow dropped a ball from a height of $y_{\mathrm{i}}=3.0 \pm 0.01$ m . Time of fall was $t=0.78 \pm 0.05 \mathrm{~s}$.
- We also found that g is related to y_{i} and t by the equation: $g=2 y_{i} / t^{2}$. But how do you find the error? \qquad
- I used three steps:

1. Find error in $z=t^{2}$ using $\Delta t=0.05 \mathrm{~s}$, and the \qquad exponent rule: $\Delta z=\left|n t^{n-1} \Delta t\right|=2 t \Delta t$.
2. Find error in $w=y_{\mathrm{i}} / z$ using $\Delta y_{\mathrm{i}}, \Delta z$ and the product \qquad rule: $\Delta w=w \operatorname{sqrt}\left[\left(\Delta y_{\mathrm{i}} / y_{\mathrm{i}}\right)^{2}+(\Delta \mathrm{z} / z)^{2}\right]$
3. Find error in $g=2 w$ using Δw and the multiply by exact constant rule: $\Delta g=2 \Delta w$.

- Result: $g=9.9 \pm 1.3 \mathrm{~m} / \mathrm{s}^{2}$

Recall demonstration from last class:

\qquad
\qquad

Assuming Gaussian statistics:

- Measured value should be within 1 sigma of the true value 68% of the time.
- Measured value should be within 2 sigma of the true value 95% of the time.

Last day I asked at the end of class:

- Can you add a scalar to a vector?
- ANSWER: No. A 2-D vector is represented by a pair of numbers (ie x - and y-components, or magnitude and direction), and you can't add a scalar number to this.
- Can you multiply a vector by a scalar?
- ANSWER: YES! When you multiply a vector by a scalar, you can either:
- Multiply both the x and y components by this scalar, or
- Multiply the magnitude by the scalar, and keep the direction unchanged (but you flip direction 180° for a negative scalar)

Motion on an Inclined Plane

$$
\begin{equation*}
a_{s}= \pm g \sin \theta \tag{2.25}
\end{equation*}
$$

The ball rolls up the ramp, then back down. Which is the correct acceleration graph?
[Define positive s as up and to the right.]

(a)

(c)

(d)

(e)
\qquad

\qquad
\qquad
\qquad
\qquad

$$
\vec{C}=\vec{A}+\vec{B}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

FIGURE 3.16 Moving between the geometric representation and the component representation.
(b)

FIGURE 3.21 The unit vectors $\hat{\imath}$ and $\hat{\jmath}$.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

Example from a previous PHY131 Mid-Term Test
\qquad

A ball is suspended on a string, and moves in a horizontal circle as shown in the figure. The string makes a constant angle $\theta=10.0$ degrees with the vertical. The tension in the string is 8.46 N , and the force of gravity on the ball is 8.33 N , in the negative-y direction. What is the net (total) force \qquad on the ball?

\qquad
\qquad
\qquad

Acceleration in 1-D (along a line)

\qquad

- Velocity is the time-derivative of position.
- Acceleration is the time-derivative of velocity.
- S.I. unit of acceleration is m/s per second, also called $\mathrm{m} / \mathrm{s}^{2}$.
- Acceleration is like the "speed of the speed" \qquad
- Acceleration is "how fast fast changes!"
- It is possible to be momentarily stopped
\qquad ($\mathrm{v}=0$) with a non-zero acceleration!

Horizontal Acceleration Example

- A car starts from rest, then drives to the right. It speeds up to a maximum speed of $30 \mathrm{~m} / \mathrm{s}$. It coasts at this speed for a while, then the driver hits the brakes, and the car slows down to a stop.
- While it is speeding up, the acceleration vector of the car is
A. to the right.
B. to the left.
C.zero.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Horizontal Acceleration Example

- While the car is coasting, the acceleration vector of the car is
A. to the right. \qquad
B. to the left
C.zero. \qquad
\qquad

Horizontal Acceleration Example \qquad
\qquad
\qquad

- While the car is slowing down, the acceleration \qquad vector of the car is
A. to the right. \qquad
B. to the left.
C.zero.

Vertical Acceleration Example (freefall)

- A ball starts with an upward velocity, reaches a maximum height, then falls back down again.
- While the ball is going up (after it has left my hand), the acceleration vector of the ball is
A.up.
B.down.
C.zero.

Vertical Acceleration Example (freefall)

\qquad
\qquad

- When the ball is momentarily stopped \qquad at the top of its path, the acceleration vector of the ball is \qquad
A.up.
B. down.
C.zero.

Acceleration in 2-D

The average acceleration of a moving object is defined as the vector

$$
\vec{a}_{\mathrm{avg}}=\frac{\Delta \vec{v}}{\Delta t}
$$

As an object moves, its velocity vector can change in two possible ways:

1. The magnitude of the velocity can change, indicating a change in speed, or
\qquad
2. The direction of the velocity can change, indicating that the object has changed direction. \qquad
...or both!

This acceleration will cause the particle to \qquad

\qquad
\qquad
A. slow down and curve downward. \qquad
B. slow down and curve upward.
C. speed up and curve downward. \qquad
D. speed up and curve upward.
E. move to the left and down. \qquad
\qquad

Projectile Motion

\qquad

FIGURE 4.15 The parabolic trajectory of a \qquad bouncing ball.

\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

Projectile Motion

Projectile motion is made up of two independent motions: uniform motion at constant velocity in the horizontal direction and free-fall motion in the vertical direction. The kinematic equations that describe these two motions are

$$
\begin{array}{ll}
x_{\mathrm{f}}=x_{\mathrm{i}}+v_{\mathrm{i} x} \Delta t & y_{\mathrm{f}}=y_{\mathrm{i}}+v_{\mathrm{i} y} \Delta t-\frac{1}{2} g(\Delta t)^{2} \\
v_{\mathrm{f} x}=v_{\mathrm{i} x}=\mathrm{constant} & v_{\mathrm{f} y}=v_{\mathrm{i} y}-g \Delta t
\end{array}
$$

\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Monkey and Hunter Demonstration
The classic problem: "A monkey hanging from the branch of a tree is spotted by a hunter. The monkey sees that the barrel of the gun is pointed directly at him. At the exact instant the gun is fired, the monkey lets go of the branch. Will the bullet
(A) go above the monkey, (B) go below the monkey, or (C) hit the monkey?
Our demonstration uses a tennis ball launcher. The launcher is aimed directly at the monkey, which is held up by an electromagnet. As the ball leaves the launcher it breaks a beam that releases the magnet.
 the barometer and bottle
A. decreases
B. increases
C. stays the same.

You drop a glass barometer from the top of McLennan Physical Labs. A short time later, before the barometer hits the ground, you drop a bottle of scotch. As they fall, the distance between
 .
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Relative Motion

If we know an object's velocity measured in one reference frame, S, we can transform it into the velocity that would be measured by an experimenter in a different reference frame, S^{\prime}, using the Galilean transformation of velocity.

$$
\vec{v}=\vec{v}^{\prime}+\vec{V} \quad \text { or } \quad \vec{v}^{\prime}=\vec{v}-\vec{V}
$$

Or, in terms of components,

$$
\begin{array}{lll}
v_{x}=v_{x}^{\prime}+V_{x} & & v_{x}^{\prime}=v_{x}-V_{x} \\
v_{y}=v_{y}^{\prime}+V_{y} & \text { or } & v_{y}^{\prime}=v_{y}-V_{y}
\end{array}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Relative Motion

- Example 1: A passenger walks toward the front of the train at $5 \mathrm{~m} / \mathrm{s}$. The train is moving at $36 \mathrm{~m} / \mathrm{s}$. What is the speed of the passenger relative to the ground?
\qquad
- Example 2: Car A is traveling at $25.0 \mathrm{~m} / \mathrm{s}$ \qquad E toward Bloor and Keele. Car B is traveling at $15.8 \mathrm{~m} / \mathrm{s} \mathrm{N}$ toward Bloor and Keele. Just before they collide, what is
\qquad the velocity of car A relative to car B?

You are on an Eastbound subway train going at 20 m / s. You notice the Westbound train on the other track. Relative to the ground, that Westbound
\qquad train has a speed of $20 \mathrm{~m} / \mathrm{s}$. What is the velocity of the Westbound train as measured by you? \qquad
\qquad
A. $40 \mathrm{~m} / \mathrm{s}$, West
B. $20 \mathrm{~m} / \mathrm{s}$, West \qquad
C. zero
D. $20 \mathrm{~m} / \mathrm{s}$, East
E. $40 \mathrm{~m} / \mathrm{s}$, East
\qquad
\qquad

A plane traveling East at $\mathbf{1 0 0} \mathbf{m} / \mathrm{s}$ flies near a helicopter that is going North at $20 \mathrm{~m} / \mathrm{s}$. From the helicopter's perspective, the plane's direction and speed are
A. between North and East, more than $100 \mathrm{~m} / \mathrm{s}$.
B. between North and East, less than $100 \mathrm{~m} / \mathrm{s}$.
C. between South and East, more than $100 \mathrm{~m} / \mathrm{s}$.
D. between South and East, less than $100 \mathrm{~m} / \mathrm{s}$.
E. between South and East, $100 \mathrm{~m} / \mathrm{s}$.

Before Next Class:

- Read Chapters 4 and 5 of Knight.
- Complete MasteringPhysics.com Problem Set 2 due by May 25 at 11:59pm
- Something to think about: You are driving North Highway 427, on the smoothly curving part that will join to the Westbound 401. Your speedometer is constant at $115 \mathrm{~km} / \mathrm{hr}$. Your steering wheel is not rotating, but it is turned to the left to follow the curve of the highway. Are you accelerating? If so, in what direction?
\qquad

