PHY132H1F Introduction to Physics II

 Class 4 - Outline:- Standing Waves in closed-closed, openopen, and closed-open tubes
- Interference in 1-D and 2-D
- Beats
- Ray optics, and the law of reflection

Quick reading quiz..

What is specular reflection?

A. The image of a specimen.
B. A reflection that separates different colors.
C. Reflection by a flat smooth object.
D. When the image is virtual and special.
E. This topic is not covered in Chapter 23, Sections 23.1-4.

Standing Sound Waves

- A long, narrow column of air, such as the air in a tube or pipe, can support a longitudinal standing sound wave.
- A closed end of a column of air must be a displacement node. Thus the boundary conditions nodes at the ends - are the same as for a standing wave on a string.
- It is often useful to think of sound as a pressure wave rather than a displacement wave. The pressure oscillates around its equilibrium value.
- The nodes and antinodes of the pressure wave are interchanged with those of the displacement wave.

Wave Interference

- The pattern resulting from the superposition of two waves is often called interference. Interference can be
- constructive, meaning the disturbances add to make a resultant wave of larger amplitude, or - destructive, meaning the disturbances cancel, making a resultant wave of smaller amplitude.
(b) Two overlapped sound waves

In Class Discussion Question
Two speakers, A and B, are "in phase" and emit a pure note with a wavelength 2 m .
The speakers are side-by-side, 3 m apart.
Point C is 4 m directly in front of speaker A .
How many wavelengths are between Speaker B and Point C ?
A. 0.5
B. 1.0
C. 1.5
D. 2.0
E. 2.5

In Class Discussion Question
Two speakers, A and B, are "in phase" and emit a pure note with a wavelength 2 m .
The speakers are side-by-side, 3 m apart. Point C is 4 m directly in front of speaker A .

At point C, what is the path difference between the sounds received from speakers A and B, as measured in wavelengths?
A. 0.5
B. 1.0
C. 1.5
D. 2.0
E. 2.5

In Class Discussion Question
Two speakers, A and B, are "in phase" and emit a pure note with a wavelength 2 m .
The speakers are side-by-side, 3 m apart.
Point C is 4 m directly in front of speaker A .
At point C , there will be
A. Perfect constructive interference $\left(A_{C}=2 A\right)$
B. Perfect destructive interference ($\mathrm{A}_{\mathrm{C}}=$ zero)
C. Intermediate interference $\left(0<A_{c}<2 A\right)$

In Class Discussion Question
Two speakers, A and B, are "in phase" and emit a pure note with a wavelength 2 m . The speakers are side-by-side, 3 m apart.
Point C is 4 m directly in front of speaker A .
At point C, what is the phase difference between the sounds received from speakers A and B ?
A. 0.5π
B. π
C. 1.5 ा
D. 2.0π
E. 2.5 T

Specular vs. Diffuse Reflection

Specular Reflection

-The surface is flat at distance scales near or above the wavelength of light -It looks "shiny", like a mirror.

Specular vs. Diffuse Reflection

Diffuse Reflection

-The surface is rough at distance scales near or above the wavelength of light -Almost all surfaces reflect in this way!

How an image is formed

Virtual Image in a flat mirror

- Light rays emerging from an object obey the law of reflection for the specular surface of a mirror
- Our mind imagines that the rays emerge from points beyond the mirror.
- This thing beyond the mirror is called an image. No light rays actually pass through the image, so it is "virtual".
- It is convenient to describe the size and location of the image as if it were an actual thing.

Before Next Class:

- Problem Set 1 is due on masteringphysics tonight!
- First Practical meets on Friday in MP125C! You will be meeting your two T.A.s! Bring questions if you have them!
- Please finish reading Chapter 23. But you can skip section 23.8 (we won't be covering this on the tests or exam)

See you Friday!

