

A dentist uses a mirror to look at the back of a second
 molar (A). Next, she wishes to look at the back of a lateral incisor (B), which is 90° away. By what angle should she rotate her mirror?
A. 90°
B. 45°
C. 180°

	A dentist uses a mirror to look at the back of a second molar (A). Next, she wishes to look at the back of a lateral incisor (B), which is
90° away. By what angle	
should she rotate her mirror?	

Quick reading quiz..

A virtual image is

A. the cause of optical illusions.
B. a point from which rays appear to diverge.
C. an image that only seems to exist.
D. the image that is left in space after you remove a viewing screen.
E. an image that only can be viewed with a web-browser.

The Law of Reflection
Normal

Index of Refraction

$$
v_{\text {medium }}=\frac{c}{n}
$$

- $v_{\text {medium }}$ is the speed of light in a transparent medium.
- c is the speed of light in a vacuum ($c=3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}$)
- n is a dimensionless constant: $n \geq 1$
- $n=1$ in a vacuum

TABLE 23.1 Indices of refraction		
Medium	n	
Vacuum	1.00 exactly	
Air (actual)	1.0003	
Air (accepted)	1.00	
Water	1.33	
Ethyl alcohol	1.36	
Oil	1.46	
Glass (typical)	1.50	
Polystyrene plastic	1.59	
Cubic zirconia	2.18	
Diamond	2.41	
Silicon (infrared)	3.50	

Total Internal Reflection

- Occurs when $n_{2}<n_{1}$
- $\theta_{c}=$ critical angle.
- When $\theta_{l} \geq \theta_{c}$, no light is transmitted through the boundary; 100\% reflection

$$
\sin \theta_{c}=\frac{n_{2}}{n_{1}}
$$

An Optical Fibre

Color

Different colors are associated with light of different wavelengths. The longest wavelengths are perceived as red light and the shortest as violet light. Table 23.2 is a brief summary of the visible spectrum of light.

TABLE 23.2 the visible spectrum of light	
Color	Approximate wavelength
Deepest red	700 nm
Red	650 nm
Green	550 nm
Blue	450 nm
Deepest violet	400 nm

Dispersion

The slight variation of index of refraction with wavelength is known as dispersion. Shown is the dispersion curves of two common glasses. Notice that \boldsymbol{n} is larger when the wavelength is shorter, thus violet light refracts more than red light.

Virtual Image in a flat mirror

- Light rays emerging from an object obey the law of reflection for the specular surface of a mirror
- Our mind imagines that the rays emerge from points beyond the mirror.
- This thing beyond the mirror is called an image. No light rays actually pass through the image, so it is "virtual".
- It is convenient to describe the size and location of the image as if it were an actual thing.

Two plane mirrors form a right angle. How many images of the ball can you see in the mirrors?
A. 1

Observer
B. 2
C. 3 -
D. 4

Lenses

- Formed by two curved boundaries between transparent media.
- Lenses often have spherical surfaces (lens-maker's equation). The curved surfaces are parts of large spheres of radius R_{1} or R_{2}.
- Every lens shaped like a circle has a diameter, D , and focal length, f.
- The ratio of (f / D) is called " f-number". For example, an " $f / 6$ " lens has a focal length of 6 times its diameter.

Diverging rays through a Converging Lens

This follows from the principle of reversibility.

What will happen to the rays emerging to the right of the lens if the face is moved a little closer to the lens?
A. They will remain parallel.
B. They will diverge (spread out).
C. They will converge (toward a focus).

What will happen to the rays emerging to the right of the lens if the face is moved a little further away from the lens?
A. They will remain parallel.
B. They will diverge (spread out).
C. They will converge (toward a focus).

Diverging rays through a Converging Lens

Thin Lens Equation: sign conventions

s is positive for objects to the left of lens, negative for objects to the right of lens (virtual objects).
s ' is positive for images to the right of lens, negative for images to the left of lens (virtual images).
f is positive for converging lenses, negative for diverging lenses.

Magnification

$$
|M| \equiv \frac{h^{\prime}}{h} \quad M=-\frac{s^{\prime}}{s}
$$

- The absolute magnitude of the magnification $|M|$ is defined to be the ratio of image height to object height.
- A positive value of M indicates that the image is upright relative to the object. A negative value of M indicates the image is inverted relative to the object.
- Note that when s and s ' are both positive, M is negative.

Before Next Class:

- Please read Chapter 24. But you can skip section 24.5 (we won't be covering this on the tests or exam)
-Try the suggested end-of-chapter problems for Chapter 23

