PHY132H1F Introduction to Physics II Class 5 – **Outline:**

- Reflection and Refraction
- Fibre-OpticsColour and
- Dispersion
- Thin Lens Equation
- Image Formation

Quick reading quiz..

A virtual image is

- A. the cause of optical illusions.
- B. a point from which rays appear to diverge.
- C. an image that only seems to exist.
- D. the image that is left in space after you remove a viewing screen.
- E. an image that only can be viewed with a web-browser.

- c is the speed of light in a vacuum (c=3.00×10⁸ m/s)
- *n* is a dimensionless constant: *n*≥1
- n=1 in a vacuum

Medium	n
Vacuum	1.00 exactly
Air (actual)	1.0003
Air (accepted)	1.00
Water	1.33
Ethyl alcohol	1.36
Oil	1.46
Glass (typical)	1.50
Polystyrene plastic	1.59
Cubic zirconia	2.18
Diamond	2.41
Silicon (infrared)	3.50

Different co wavelength red light and brief summa	Co lors are associate s. The longest way d the shortest as v ary of the visible s	d with light of different velengths are perceived as iolet light. Table 23.2 is a <i>pectrum</i> of light.
TABLE 23.2 A brief summary of the visible spectrum of light		
	Color	Approximate wavelength
	Deepest red	700 nm
	Red	650 nm
	Green	550 nm
	Blue	450 nm
	Deepest violet	400 nm

Virtual Image in a flat mirror

- Light rays emerging from an object obey the law
 of reflection for the specular surface of a mirror
- Our mind imagines that the rays emerge from points beyond the mirror.
- This thing beyond the mirror is called an image. No light rays actually pass through the image, so it is "virtual".
- It is convenient to describe the size and location of the image as if it were an actual thing.

Lenses Formed by two curved boundaries between transparent media. Lenses often have spherical surfaces (lens-maker's equation). The curved surfaces are parts of large spheres of radius R₁ or R₂. *Every* lens shaped like a circle has a diameter, D, and focal length, *f*. The ratio of (*f* / *D*) is called "f-number". For example, an "f/6" lens has a focal length of 6 times its diameter.

 $f \, {\rm is} \, {\rm positive} \, {\rm for} \, {\rm converging} \, {\rm lenses}, \, {\rm negative} \, {\rm for} \, {\rm diverging} \, {\rm lenses}.$

- The absolute magnitude of the magnification |*M* | is defined to be the ratio of image height to object height.
- A positive value of *M* indicates that the image is upright relative to the object. A negative value of *M* indicates the image is inverted relative to the object.
- Note that when *s* and *s*' are both positive, *M* is negative.

Before Next Class:

• Please read Chapter 24. But you can skip section 24.5 (we won't be covering this on the tests or exam)

•Try the suggested end-of-chapter problems for Chapter 23

See you Wednesday!