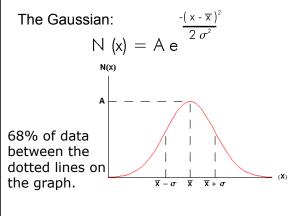
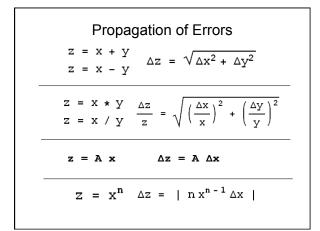
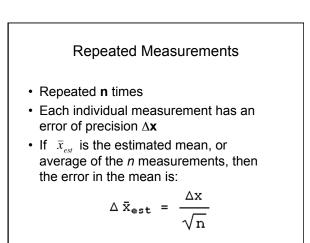

PHY132H1F Introduction to Physics II Class 7 – **Outline:**

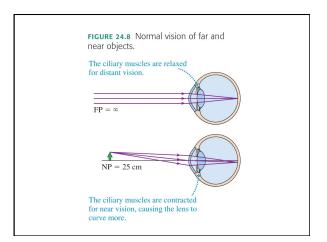

- Measurement Project due Dec. 1
- Vision
- Telescopes
- Microscopes
- The Hydrogen Atom
- Photons
- · Quantum Physics

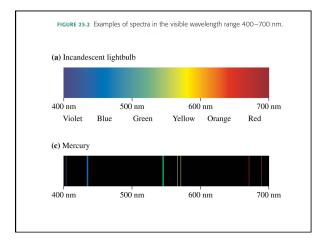

Quick Ch. 25 reading quiz..

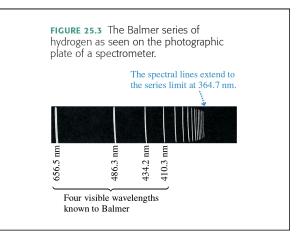

What did Balmer do?

- A. Developed the mathematical theory of atomic transitions.
- B. Designed the first atomic spectrometer.
- C. Fit the visible lines in the spectrum of hydrogen to a simple formula.
- D. Discovered that x rays are diffracted by crystals.
- E. Proposed a relation between the frequency of an electromagnetic wave and the energy of photons.

Significant Figures


- Rules for significant figures follow from error propagation
 - Errors should be quoted to 1 or 2 significant figures. Do NOT quote errors to 3 or more significant figures – that is too precise, and it is meaningless!
 - Whatever the most precise tenths place of the quoted error is, this should also be the most precise tenths place of the value you display.
- Example: If a calculated result is (7.056 +/-0.705) m, it is better to report (7.1 +/- 0.7) m.


You measure the slope of the stairs to have a rise of 72.3 cm for a run of exactly 1 m. You estimate your error to be 1 cm in the rise, and zero in the run. What is the slope?


A. 0.7 ± 0.1 B. 0.72 ± 1.00 C. 0.72 ± 0.01 D. 0.723 ± 0.010 E. 0.723 ± 0.001


Measurement Project: Due Dec. 1

- 2-page typed report based on measurement done as homework.
- Measurement Project may include measurements done with your team-mates from practicals (who should be listed as collaborators in your report), but your report should be written by you individually, and based primarily your own individual work.
- The Practicals mark counts toward 15% of the course mark, divided as follows:
 - 5% for first team notebook mark (sessions 2-5),
 - 5% for second team notebook mark (sessions 6-10) and
 - 5% for the individual Measurement Project.

The Photon model of light. (and all other forms of electromagnetic waves)

Increasing light intensity

The Photon Model of Electromagnetic Waves

The **photon model** of electromagnetic waves consists of three basic postulates:

1. Electromagnetic waves consist of discrete, massless units called photons. A photon travels in vacuum at the speed of light, 3.00×10^8 m/s.

2. Each photon has energy

$$E_{\rm photon} = hf$$

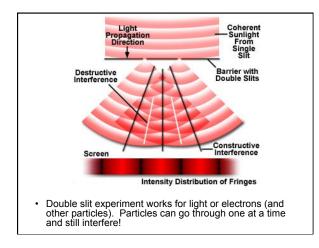
where *f* is the frequency of the electromagnetic waves, and *h* is a *universal constant* called **Planck's constant**. The value of Planck's constant is $h = 6.63 \times 10^{-34}$ J s. 3. The superposition of a sufficiently large number of photons has the characteristics of a classical electromagnetic Does a photon of red light have more energy or less energy than a photon of blue light?

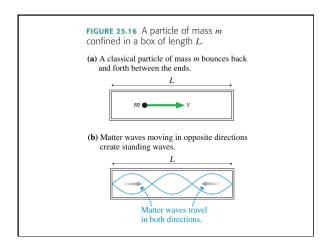
A. More energy B. Less energy

Question:

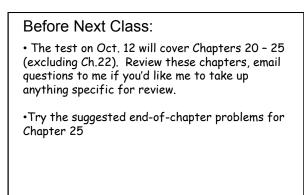
- We understand light is an electromagnetic wave. But in quantum physics, it is also like a stream of particles.
- What about the other way around? Can a stream of particles, like electrons or Helium nuclei (or even baseballs) be like a wave?
- YES!

wave.


• Matter travels from place to place as a wave. What "waves" is the probability of the particle being observed at any particular place.


The de Broglie Wavelength

De Broglie postulated that a particle of mass m and momentum p = mv has a wavelength


$$\lambda = \frac{h}{p}$$

where *h* is Planck's constant. This wavelength for material particles is now called the **de Broglie wavelength.** It depends *inversely* on the particle's momentum, so the largest wave effects will occur for particles having the smallest momentum.

1 1 1 10029	-	Pe	eric	odic	: Ta	able	e o	f th	ne I	Elei	me	nts						2 He
Bréam 3 Li	4 Be	9												6 C 12.011	T T N 14.007	8 0	9 F 18.000	10 Ne 20110
11 Na 27.000 potasalan	12 Mg	12 Mg Son Frombler Users Variable Constraint Senament in Solar Solar Concert and											13 AI 20.062 93869	14 Si 2000	15 P N1074	16 S	17 CI 35,453 bonine	18 Ar 30.545 kittate
19 K 22.055 105600	20 Ca *1075		21 Sc 44 925 39	22 Ti 47.657 29000000	23 V 50.942 nicetum 41	24 Cr	25 Mn 54.003	26 Fe	27 Co 56.935 notun 45	28 Ni 58.003 putation 46	29 Cu 63.546 sher 47	30 Zn (5.20 (5.20)	Ga earra	Ge	33 As 24.322 51	34 Se 70.05	35 Br 10,004 53	36 Kr 1100 54
Rb	Sr	57.70	Y Motor 71	2r 91.224 Tuthean 72	Nb 30.086 5840.481	Mo ss.m hegitim 74	10 1201 100000 75	Ru	Rh 102.91 103au 77	Pd 100.42 #38999		Cd	In	Sn 100.71	Sb 121.75 Iterath 81	127.60 127.60	125.30 051,050 85	Xe 100.20 36
Cs	Ba	*	Lu	Hf 178.40 104	Ta 168.85 9.0%	W SO A4	Re 100.21	0s	182.22 roductra	Pt 105.00	Au 196.97	Hg 201.00 112	TI 201.50	Pb	Bi	Po	At	Rn
Fr 123	Ra	* *	Lr	Rf	Db	Sg	Bh	Hs	Mt	Uun	Uuu	Uub		Uuq				
*Lanti	hanide	series	57 La	Ce	° Pr	60 Nd	Pm	Sm	G Eu	Gd	65 Tb	66 Dv	67 Ho	Ge Er	Tm	70 Yb		
* * Actinide series			108.54 89 Ac	90 100.12 100.00 90 Th 232.64	140.01 protection 91 Pa 231.04	146.24 92 U 228.00	1149 93 Np	158.30 periosium 94 Pu (246	101.80 95 Am	157.25 0.000 96 Cm	150.50 Fotodare 97 Bk	SS Cf	164.93 officientry 99 Es	100 Fm	101 101 1254	173.44 102 NO		
										Or	n pa	ge	131	2 o'	f Kr	iigh	t.	

See you Wednesday!