

The Wave / Particle Duality

- Some experiments, such as the double-slit experiment, clearly show that Electromagnetic Radiation is a WAVE. It interferes and it has a frequency and wavelength.
- Other experiments, such as the photoelectric effect, clearly show that Electromagnetic Radiation is a STREAM OF PARTICLES. It is granular and the individual point-particles have position and velocity.

Double Slit Experiment

- The bright fringes in a double-slit experiment are places where the waves from each slit interfere constructively. The dark fringes correspond to destructive interference from the two slits.
- When you count photons, you find that photons are more likely to fall at the location of the bright fringes then at the dark fringes. When enough have fallen, you see the same pattern as you predict for waves.
- This works even if you let the photons go through the slits one at a time!

Double Slit Experiment

- Also, the double slit experiment works if you use electrons instead of photons. The wavelength of electrons is usually smaller, though, so the fringes are very close together.
- Also, it works with protons, neutrons and helium nuclei. Again, the fringes are very closely spaced, so it's more difficult to do the experiment as the mass of the particles increases.
- But we believe that it would work with bullets, baseballs and even people. They would all constructively and destructively interfere if passed through a double slit.

The de Broglie Wavelength

De Broglie postulated that a particle of mass m and momentum $p=m v$ has a wavelength

$$
\lambda=\frac{h}{p}
$$

where h is Planck's constant. This wavelength for material particles is now called the de Broglie wavelength. It depends inversely on the particle's momentum, so the largest wave effects will occur for particles having the smallest momentum.

FIGURE 25.16 A particle of mass m
confined in a box of length L.
(a) A classical particle of mass m bounces back and forth between the ends.

(b) Matter waves moving in opposite directions create standing waves

Matter waves travel
in both directions.

An atom is like a "box" for an electron. The electron is confined, and forms a standing wave based on its de Broglie wavelength.

Ch. 20

- One-dimensional waves
- Sinusoidal Waves
- Waves in 2-D and 3-D
- Spherical waves and plane waves
- Power and Intensity of Waves (Decibels)
- The Doppler Effect

Valerie is standing by the side of the road. A police car with a siren that has a frequency of f_{0} is driving down the road towards her at a constant velocity. As it drives toward her, she hears a frequency, f.
A. $f>f_{0}$
B. $f<f_{0}$
C. $f=f_{0}$

Valerie is standing by the side of the road. A police car with a siren that has a frequency of f_{0} is driving down the road towards her at a constant velocity. As it drives toward her, she hears a frequency, f.
A. f is constant.
B. f is not constant: it decreases with time.
C. f is not constant: it increases with time.

End of Chapter Problem 24.15

- You use your $8 \times$ binoculars to focus on a 14 cm long bird in a tree 18 m away from you. What angle (in degrees) does the image of the warbler subtend on your retina?

End of Chapter Problem 24.19

- A $20 \times$ microscope objective is designed for use in an oil immersion microscope with a 16 cm tube length. The lens is marked $N A=0.90$. What is the diameter of the objective lens? (a)

Before The Test:

- The test on Tuesday, Oct. 12 will cover Chapters 20-25 (excluding Ch.22).
-Try the suggested end-of-chapter problems for Chapter 25

See you Tuesday Evening at 6:00 in SF 3201.

Before The Test:
- The test on Tuesday, Oct. 12 will cover
Chapters $20-25$ (excluding Ch.22).
- Try the suggested end-of-chapter problems for
Chapter 25
See you Tuesday Evening
at 6:00 in SF 3201.

Ch. 25

- The Hydrogen Atom
- Photons
- The de Broglie wavelength
- Quantum Physics

