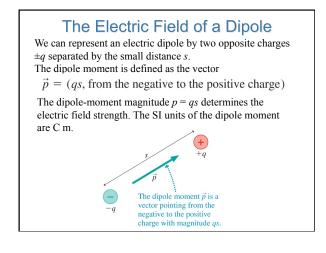
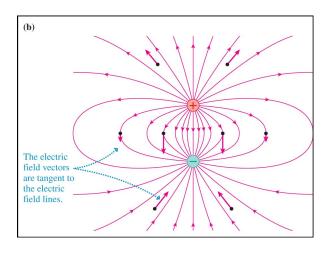
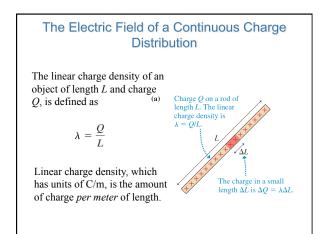
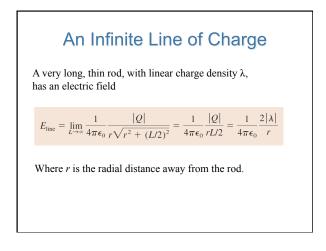
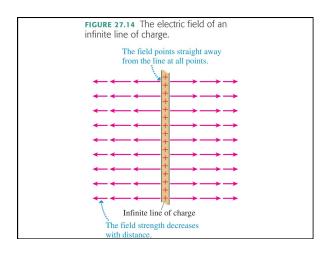

Quick Ch. 27 reading quiz.. Which of these charge distributions did not have its electric field determined in Chapter 27? A. A line of charge B. A parallel-plate capacitor C. A ring of charge D. A plane of charge E. They were *all* determined

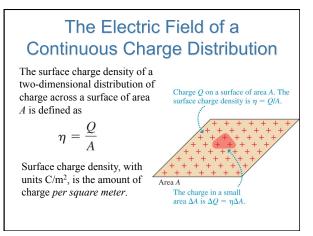




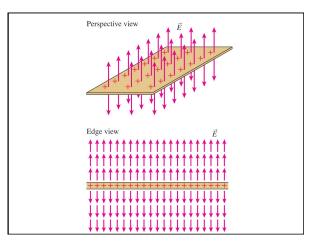



In Class Discussion Question. A particular dipole consists of a positive charge at x = 0 m, y = 0.1 m and a negative charge at x = 0 m, y = -0.1 m. What is the direction of the dipole moment? A. $+\hat{x}$ B. $-\hat{x}$ C. $+\hat{y}$ D. $-\hat{y}$ In Class Discussion Question. A particular dipole consists of a positive charge at x = 0 m, y = 0.1 m and a negative charge at x = 0 m, y = -0.1 m. If the charges have magnitudes of 1 nC each, what is the magnitude of the dipole moment? A. 1×10^{-10} Cm B. 4×10^{-10} Cm C. 2×10^{-9} Cm

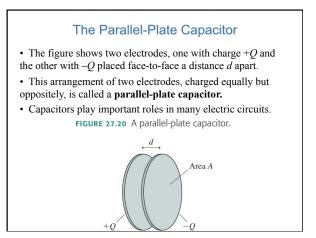

- D. 2×10^{-10} Cm
- E. 4×10⁻⁹Cm

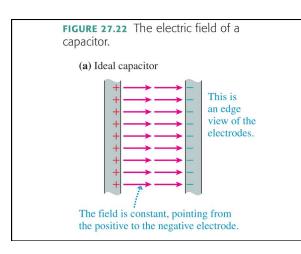


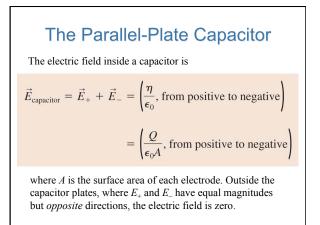
The Electric Field of a Dipole The electric field at a point on the axis of a dipole is
$\vec{E}_{\text{dipole}} \approx \frac{1}{4\pi\epsilon_0} \frac{2\vec{p}}{r^3}$ (on the axis of an electric dipole)
where <i>r</i> is the distance measured from the <i>center</i> of the dipole. The electric field in the plane that bisects and is perpendicular to the dipole is
$\vec{E}_{\text{dipole}} \approx -\frac{1}{4\pi\epsilon_0} \frac{\vec{p}}{r^3}$ (perpendicular plane)
This field is opposite to the dipole direction, and it is only half the strength of the on-axis field at the same distance.


A Plane of Charge

The electric field of an infinite plane of charge with surface charge density η is:


$$E_{\text{plane}} = \frac{\eta}{2\epsilon_0} = \text{constant}$$


For a positively charged plane, with $\eta > 0$, the electric field points *away from* the plane on both sides of the plane.


For a negatively charged plane, with $\eta < 0$, the electric field points *towards* the plane on both sides of the plane.

A sphere of charge Q and radius R, be it a uniformly charged
sphere or just a spherical shell, has an electric field *outside*
the sphere that is exactly the same as that of a point charge
Q located at the center of the sphere:
$$\vec{E}_{sphere} = \frac{Q}{4\pi\epsilon_0 r^2} \hat{r} \qquad \text{for } r \ge R$$

Before Next Class:

•Try the suggested end-of-chapter problems for Chapter 27, posted on the Materials part of the web-site.

• Please read the first half of Chapter 29 on Electric Potential before Wednesday's class. [We are skipping Chapter 28 in this course.]

See you Wednesday!