PHY132H1F Introduction to Physics II
Class 12 : Half-way through the semester!

- Today:
- Electric Potential of Many Charges
- Finding Electric Field from the Potential
- Batteries, EMF

CRAZY PHENOMENON	IFIT WORKED, COMPANIES WOUL BE USING IT TO MAKE A KIUING IN...	ARE THET?
Remote viewing	OLL PROSPECTING	
Dowsing		
AURAS	HEALTH CARE COST REDUCTION	
HOMEOPATH		
REMOTE PRAYER		
ASTROLOGY	FINANCIAL/BUSINESS PLANNING	
tarot		
CRYSTAL ENERGY	REQUAR ENERGY	
CURSES, HEXES	THE MILITARY	
RELATIVITY	GPS DEVICES	\checkmark
QUANTUM EECTRODNNAICS	SEMICONDUCTOR CIRCUIT DESIGN	\checkmark
Eventually, arguing that These thing work MEAWS ARGUING THAT MODERN CAPITALSM ISN'T THAT RUTHLESSLY PROFIT-FOCUSED.		

Quick Ch. 26,27,29,30 reading quiz.. [2/4]

The magnitude of the Electric Field, in Newtons per Coulomb, near a point charge is:
A. $K \frac{q}{r}$
C. $K \frac{q_{1} q_{2}}{r}$
B. $K \frac{q}{r^{2}}$
D. $K \frac{q_{1} q_{2}}{r^{2}}$

$$
K=\frac{1}{4 \pi \varepsilon_{0}}
$$

Quick Ch. 26,27,29,30 reading quiz.. [3/4]

The electric potential energy, in Joules, of two point charges is:
A. $K \frac{q}{r}$
B. $K \frac{q}{r^{2}}$
C. $K \frac{q_{1} q_{2}}{r}$
D. $K \frac{q_{1} q_{2}}{r^{2}}$
$K=\frac{1}{4 \pi \varepsilon_{0}}$
A. $K \frac{q}{r}$
B. $K \frac{q}{r^{2}}$
C. $K \frac{q_{1} q_{2}}{r}$
D. $K \frac{q_{1} q_{2}}{r^{2}}$

The magnitude of the force, in Newtons, on a point charge that is near another point charge is:

Quick Ch. 26,27,29,30 reading quiz.. [1/4]

Quick Ch. 26,27,29,30 reading quiz.. [4/4]
The electric potential, in Volts, near a point charge is:
A. $K \frac{q}{r}$
C. $K \frac{q_{1} q_{2}}{r}$
B. $K \frac{q}{r^{2}}$
D. $K \frac{q_{1} q_{2}}{r^{2}}$

$$
K=\frac{1}{4 \pi \varepsilon_{0}}
$$

The Potential Energy of a Dipole

The potential energy of an electric dipole p in a uniform electric field E is

$$
U_{\text {dipole }}=-p E \cos \phi=-\vec{p} \cdot E
$$

> The electric forces exert a torque on the dipole.
The potential energy is minimum at $\Phi=0^{\circ}$ where the dipole is aligned with the electric field.

EXAMPLE 29.5 Rotating a molecule

QUESTION:

EXAMPLE 29.5 Rotating a molecule
The water molecule is a permanent electric dipole with dipole moment $6.2 \times 10^{-30} \mathrm{Cm}$. A water molecule is aligned in an electric field with field strength $1.0 \times 10^{7} \mathrm{~N} / \mathrm{C}$. How much energy is needed to rotate the molecule 90° ?

FIGURE 29.16 The energy of a dipole in an electric field.

Review of electric potential..

- For the space surrounding a point charge, q, the electric potential due to this charge is:

$$
V=\frac{K q}{r}
$$

- where V is electric potential [V], $K=8.99 \times 10^{9} \mathrm{Nm}^{2} / \mathrm{C}^{2}, q$ is the charge [C] (including +/- sign), and r is the distance from q (always positive).
- Potential has an arbitrary zero point. We could have just as correctly written:

$$
V=\frac{K q}{r}+V_{0}
$$

- where V_{0} is some constant.
- By convention, we choose $V=0$ when $r \rightarrow \infty$. So $V_{0}=0$ in the first equation.

Review of electric potential..

- For the space surrounding a point charge, q, the electric potential due to this charge is:

$$
V=\frac{K q}{r}
$$

- where V is electric potential [V], $K=8.99 \times 10^{9} \mathrm{Nm}^{2} / \mathrm{C}^{2}, q$ is the charge [C] (including $+/-$ sign), and r is the distance from q (always positive).
- When two or more charges are present, the total potential is the sum of the potentials of the individual charges.
- A positive test charge tends to accelerate from high V to low V. It gains kinetic energy as it does this, and we say that this energy comes from the electric potential.

In Class Discussion Question

The electric field

A. is always perpendicular to an equipotential surface.
B. is always tangent to an equipotential surface.
C. always bisects an equipotential surface.
D. makes an angle to an equipotential surface that depends on the amount of charge.

Finding the Potential from the Electric Field

The potential difference between two points in space is

$$
\Delta V=V_{\mathrm{f}}-V_{\mathrm{i}}=-\int_{s_{\mathrm{i}}}^{s_{\mathrm{f}}} E_{s} d s=-\int_{\mathrm{i}}^{\mathrm{f}} \vec{E} \cdot d \vec{s}
$$

where s is the position along a line from point i to point f . That is, we can find the potential difference between two points if we know the electric field.

We can think of an integral as an area under a curve. Thus a graphical interpretation of the equation above is
$V_{\mathrm{f}}=V_{\mathrm{i}}-$ (area under the E_{s}-versus- s curve between s_{i} and s_{f})

Finding the Electric Field from the Potential

In terms of the potential, the component of the electric field in the s-direction is

$$
E_{s}=-\frac{d V}{d s}
$$

What if we want to find the electric potential from the Electric field?
... the opposite function of differentiation is integration.

Batteries and emf

The potential difference between the terminals of an ideal battery is

$$
\left.\Delta V_{\text {bat }}=\frac{W_{\text {chem }}}{q}=\mathcal{E} \quad \text { (ideal battery }\right)
$$

In other words, a battery constructed to have an emf of 1.5 V creates a 1.5 V potential difference between its positive and negative terminals.

The total potential difference of batteries in series is the sum of their individual terminal voltages:

$$
\Delta V_{\text {series }}=\Delta V_{1}+\Delta V_{2}+\cdots \quad(\text { batteries in series })
$$

In class discussion question
What total potential difference $\left(V_{B}-V_{A}\right)$ is created by these three batteries?

A. 1.0 V
B. 2.0 V
C. 5.0 V
D. 6.0 V
E.7.0 V

Before Next Class:

- Please finish reading Chapter 30 on "Potential and Field" before Wednesday's class. We will be talking about capacitors.
- MasteringPhysics Problem Set 5, due Wednesday evening, only has 3 problems, but they aren't easy. They test your understanding of Chapter 29.

See you Wednesday!

