

Review: The big ideas of Chapter 32

E.O.C. Suggested Problem 32.65

What is the current through the 10Ω resistor? Is the current from left to right or right to left?

E.O.C. Suggested Problem 32.75

- The switch in the figure has been in position a for a very long time. It is suddenly flipped to position \mathbf{b} for 1.25 ms , then back to \mathbf{a}. How much energy is dissipated by the 50Ω resistor?

Review for test tomorrow: Ch. 26
The Field Model
Charges interact with each other via the electric field \vec{E}.
- Charge A alters the space around it by creating an
electric field.
- The field is the agent that exerts a force. The force on
charge q_{B} is $\vec{F}_{\text {on } \mathrm{B}}=q_{\mathrm{B}} \vec{E}$.
An electric field is identified and measured in terms of the force on a probe charge $q:$ $\qquad \vec{E}=\vec{F}_{\text {on } q} / q$

$$
\begin{aligned}
& \text { Sources of } \vec{E} \quad \text { Ch. } 27 \\
& \text { Electric fields are created by charges. } \\
& \text { Two major tools for calculating } \vec{E} \text { are } \\
& \text { - The field of a point charge: } \\
& \qquad \vec{E}=\frac{1}{4 \pi \epsilon_{0}} \frac{q}{r^{2}} \hat{r} \\
& \text { - The principle of superposition } \\
& \text { Multiple point charges } \\
& \text { Use superposition: } \vec{E}=\vec{E}_{1}+\vec{E}_{2}+\vec{E}_{3}+
\end{aligned}
$$

Review for test tomorrow: Ch. 29
Consequences of v
A charged particle has potential energy
$U=q V$
at a point where source charges have created an electric potential V.
The electric force is a conservative force, so the mechanical energy is conserved for a charged particle in an electric potential:
$K_{f}+U_{\mathrm{f}}=K_{\mathrm{i}}+U_{\mathrm{i}}$
The potential energy of two point charges separated by distance r is
$U_{q_{1+q_{2}}}=\frac{K q_{1} q_{2}}{r}=\frac{1}{4 \pi \epsilon_{0}} \frac{q_{1} q_{2}}{r}$
The zero point of potential and potential energy is chosen to be convenient. For point charges, we let $U=0$ when $r \rightarrow \infty$.
The potential energy in an electric field of an electric dipole with dipole moment \vec{p} is
$U_{\text {dipoke }}=-p E \cos \theta=-\vec{p} \cdot \vec{E}$

Review for test tomorrow: Ch. 29
Sphere of charge Q Same as a point charge if $r \geq R$
Parallel-plate capacitor $V=E s$ where s is measured from the negative elate. The electric field inside is $E=\frac{\Delta V_{\mathrm{C}}}{d}$
Units Electric potential: $1 \mathrm{~V}=1 \mathrm{~J} / \mathrm{C}$ Electric field: $1 \mathrm{~V} / \mathrm{m}=1 \mathrm{~N} / \mathrm{C}$

Chapter 29 Review Question.	
Rank in order, from largest to smallest, the potential differences $\Delta \boldsymbol{V}_{12}, \Delta \boldsymbol{V}_{13}$, and $\Delta \boldsymbol{V}_{23}$ between points 1 and 2, points 1 and 3, and points 2 and 3. A. $\Delta V_{13}>\Delta V_{12}>\Delta V_{23}$ B. $\Delta V_{13}=\Delta V_{23}>\Delta V_{12}$ C. $\Delta V_{13}>\Delta V_{23}>\Delta V_{12}$ D. $\Delta V_{12}>\Delta V_{13}=\Delta V_{23}$ E. $\Delta V_{23}>\Delta V_{12}>\Delta V_{13}$	

[^0]
[^0]: -Test 2 will cover material from chapters 26,27 ,
 29, 30, 31 and 32

 - Questions will be similar to
 - MasteringPhysics
 - Practicals Activities and discussion questions
 - End-of-Chapter suggested problems
 - In-class clicker questions
 - Examples from your reading
 - Don't forget your calculator and one $8.5 \times 11^{\prime \prime}$ aid sheet, which may be double-sided See you Tuesday Evening at 6:00 in SF 3201.

