PHY132H1F Introduction to Physics II Class 20 – **Outline:**

- Finishing Ch.33:
- · Magnetic Forces with current carrying wires
- The Mass Spectrometer
- Ch. 35 Sections 1-4:
- · Relating Electric and Magnetic Fields
- Maxwell's Equations
- · The speed of light

Quick Ch. 35 reading quiz..

Galilean Relativity compares *inertial* reference frames where relative speeds are much less than c. The principle of relativity states that

- A. Velocity, acceleration, and force are all relative, meaning: they depend on the reference frame of the observer.
- B. Velocity is relative, but acceleration and force *do not* depend on the reference frame of the observer.
- C. Velocity and acceleration are relative, but force *does not* depend on the reference frame of the observer.
- D. Velocity and force are relative, but acceleration *does not* depend on the reference frame of the observer.
- E. Acceleration and force are relative, but velocity *does not* depend on the reference frame of the observer.

In Class Discussion Question: review of Ch.33

(using Right Hand Rule for Fields)

An electric power line carries a steady current of 150 A toward the North. At a point in space 5 m above the wire, what is the direction of the magnetic field due to the current in the wire?

- A. North
- B. South
- C. East
- D. West
- E. Up or Down

E. Up or Down

Ch. 35: The Galilean Transformations

Consider two reference frames S and S'. The coordinate axes in S are x, y, z and those in S' are x', y', z'. Reference frame S' moves with velocity v relative to S along the x-axis. Equivalently, S moves with velocity -v relative to S'.

The Galilean transformations of position are:

 $u_{7} = u_{7}'$

 $x = x' + vt \qquad x' = x - vt$ $y = y' \qquad \text{or} \qquad y' = y$ $z = z' \qquad z' = z$ The Galilean transformations of velocity are: $u_x = u'_x + v \qquad u'_x = u_x - v$ $u_y = u'_y \qquad \text{or} \qquad u'_y = u_y$

 $u'_{7} = u_{7}$

History of Light

- 1864 James Clerk Maxwell published his equations describing the dynamic relations of the electric and magnetic fields.
- Maxwell showed that disturbances in the electric and magnetic fields could propagate as a transverse wave, and he solved for the theoretical speed of this wave.

Electromagnetic Waves

Maxwell, using his equations of the electromagnetic field, was the first to understand that light is an oscillation of the electromagnetic field. Maxwell was able to predict that

- Electromagnetic waves can exist at any frequency, not just at the frequencies of visible light. This prediction was the harbinger of radio waves.
- All electromagnetic waves travel in a vacuum with the same speed, a speed that we now call the *speed of light*.

$$v_{\rm em} = \frac{1}{\sqrt{\epsilon_0 \mu_0}} = 3.00 \times 10^8 \,\mathrm{m/s} = c$$

