

Radiation Pressure

It's interesting to consider the force of an electromagnetic wave exerted on an object per unit area, which is called the radiation pressure p_{rad}. The radiation pressure on an object that absorbs all the light is

$$
p_{\mathrm{rad}}=\frac{F}{A}=\frac{P / A}{c}=\frac{I}{c}
$$

where I is the intensity of the light wave. The subscript on $p_{\text {rad }}$ is important in this context to distinguish the radiation pressure from the momentum p.

Properties of Electromagnetic Waves

The energy flow of an electromagnetic wave is described by the Poynting vector defined as

$$
\vec{S} \equiv \frac{1}{\mu_{0}} \vec{E} \times \vec{B}
$$

The units of S are [Watts $/ \mathrm{m}^{2}$]. The magnitude of the Poynting vector is

$$
S=\frac{E B}{\mu_{0}}=\frac{E^{2}}{c \mu_{0}}
$$

The intensity of an electromagnetic wave whose electric field amplitude is E_{0} is

$$
I=\frac{P}{A}=S_{\mathrm{avg}}=\frac{1}{2 c \mu_{0}} E_{0}^{2}=\frac{c \epsilon_{0}}{2} E_{0}^{2}
$$

Quick Ch. 37 reading quiz..

A flashlight is moving forward at speed $0.1 c$ (10% of the speed of light, or $30,000 \mathrm{~km} / \mathrm{s}$).

How fast do the light waves emerge from the front of the flashlight, as observed by a person who is at rest on the ground?
A. c
B. $1.1 c$
C. $0.9 c$

Quick Ch. 37 reading quiz..
A flashlight is moving forward at speed $0.1 c$ (10% of the speed of light, or $30,000 \mathrm{~km} / \mathrm{s}$).

How fast do the light waves emerge from the front of the flashlight, as observed by the moving person who is holding on to the flashlight?
A. c
B. $1.1 c$
C. $0.9 c$

Einstein's Principle of Relativity (1905)

Principle of relativity All the laws of physics are the same in all inertial reference frames.

- Maxwell's equations are true in all inertial reference frames.
- Maxwell's equations predict that electromagnetic waves, including light, travel at speed $c=3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}$.
- Therefore, light travels at speed c in all inertial reference frames.

Every experiment to date (circa 2010) has found that light travels at $3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}$ in every inertial reference frame, regardless of how the reference frames are moving with respect to each other.

Principle of Constancy of Lightspeed

The speed of light (and of other electromagnetic radiation) in empty space is the same for all nonaccelerated observers, regardless of the motion of the light source or of the observer.

Michelson-Morley Experiment (1887)

- Result: No variation. The speed of light was always exactly c in any direction at any time of year.

Einstein's Principle of Relativity (1905)

Principle of relativity All the laws of physics are the same in all inertial reference frames.

All the results of relativity follow from this simple principle, which implies that light travels at $3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}$ in every inertial reference frame. Examples:

- The relativity of time - moving clocks run slow.
- The relativity of space - moving objects are shorter along the direction of motion.
- The relativity of mass - moving objects are more massive.
- c as the speed limit - impossible to accelerate an object to or beyond c.
- $E=m c^{2}$

Light Clocks

A "light clock" is made up of two parallel mirrors, separated by a vacuum and held at a fixed distance of d.

A short pulse of light bounces between the mirrors, "ticking" for each bounce.

Time Dilation

The time interval between two events that occur at the same position is called the proper time $\Delta \tau$. In an inertial reference frame moving with velocity $v=\beta c$ relative to the proper time frame, the time interval between the two events is

$$
\left.\Delta t=\frac{\Delta \tau}{\sqrt{1-\beta^{2}}} \geq \Delta \tau \quad \text { (time dilation }\right)
$$

The "stretching out" of the time interval is called time dilation.

Length Contraction

The distance L between two objects, or two points on one object, measured in the reference frame S in which the objects are at rest is called the proper length ℓ. The distance L^{\prime} in a reference frame S^{\prime} is

$$
L^{\prime}=\sqrt{1-\beta^{2}} \ell \leq \ell
$$

NOTE: Length contraction does not tell us how an object would look. The visual appearance of an object is determined by light waves that arrive simultaneously at the eye. Length and length contraction are concerned only with the actual length of the object at one instant of time.

Recall the Galilean Transformations

Consider two reference frames S and S^{\prime}. The coordinate axes in S are x, y, z and those in S^{\prime} are $x^{\prime}, y^{\prime}, z^{\prime}$. Reference frame S^{\prime} moves with velocity v relative to S along the x axis. Equivalently, S moves with velocity -v relative to S^{\prime}. The Galilean transformations of position are:

$$
\begin{array}{lll}
x=x^{\prime}+v t & & x^{\prime}=x-v t \\
y=y^{\prime} & \text { or } & y^{\prime}=y \\
z=z^{\prime} & & z^{\prime}=z
\end{array}
$$

The Galilean transformations of velocity are:

$$
\begin{array}{lll}
u_{x}=u_{x}^{\prime}+v & & u_{x}^{\prime}=u_{x}-v \\
u_{y}=u_{y}^{\prime} & \text { or } & u_{y}^{\prime}=u_{y} \\
u_{z}=u_{z}^{\prime} & & u_{z}^{\prime}=u_{z}
\end{array}
$$

