

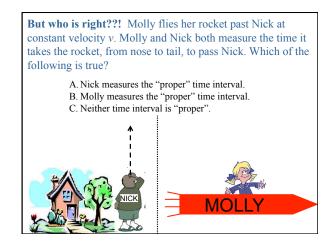
But it's a further distance in Molly's frame. (she isn't length contracted in her own frame).



The time interval between two events that occur at the *same position* is called the **proper time** $\Delta \tau$. In an inertial reference frame moving with velocity $v = \beta c$ relative to the proper time frame, the time interval between the two events is

$$\Delta t = \frac{\Delta \tau}{\sqrt{1 - \beta^2}} \ge \Delta \tau \qquad \text{(time dilation)}$$

The "stretching out" of the time interval is called time dilation.



Length Contraction

The distance *L* between two objects, or two points on one object, measured in the reference frame S in which the objects are at rest is called the proper length ℓ . The distance *L*' in a reference frame S' is

$L' = \sqrt{1-\beta^2}\ell \leq \ell$

NOTE: Length contraction does not tell us how an object would *look*. The visual appearance of an object is determined by light waves that arrive simultaneously at the eye. Length and length contraction are concerned only with the *actual* length of the object at one instant of time.

Recall the Galilean Transformations

Consider two reference frames S and S'. The coordinate axes in S are x, y, z and those in S' are x', y', z'. Reference frame S' moves with velocity v relative to S along the x-axis. Equivalently, S moves with velocity -v relative to S'.

The Galilean transformations of position are:

 $x = x' + vt \qquad x' = x - vt$ $y = y' \qquad \text{or} \qquad y' = y$ $z = z' \qquad z' = z$ The Galilean transformations of velocity are: $u_x = u'_x + y \qquad u'_x = u_x - y$

$$u_x = u'_x + v \qquad u_x = u'_x$$

$$u_y = u'_y \qquad \text{or} \qquad u'_y = u_y$$

$$u_z = u'_z \qquad u'_z = u_z$$

The Lorentz Transformations

Consider two reference frames S and S'. An event occurs at coordinates x, y, z, t as measured in S, and the same event occurs at x', y', z', t' as measured in S'. Reference frame S' moves with velocity +v relative to S, along the x-axis.

The Lorentz transformations for the coordinates of one event are:

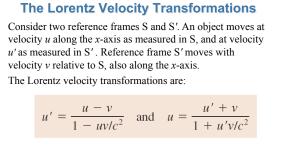
$$x' = \gamma(x - vt) \qquad x = \gamma(x' + vt')$$

$$y' = y \qquad y = y'$$

$$z' = z \qquad z = z'$$

$$t' = \gamma(t - vx/c^{2}) \qquad t = \gamma(t' + vx'/c^{2})$$

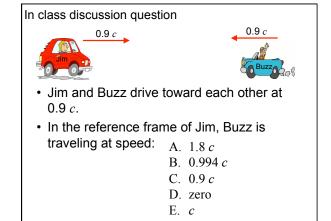
$$\gamma = \frac{1}{\sqrt{1 - v^{2}/c^{2}}} = \frac{1}{\sqrt{1 - \beta^{2}}}$$

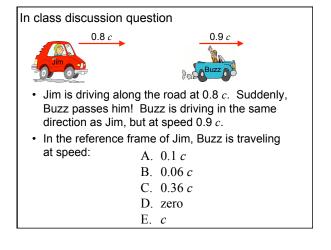


NOTE: It is important to distinguish carefully between v, which is the relative velocity between two reference frames, and u and u' which are the velocities of an *object* as measured in the two different reference frames.

Example

- Jim and Buzz drive toward each other. Each is driving at 0.6 *c*.
- In the reference frame of Jim, how fast is Buzz approaching him?





Relativistic Momentum

The momentum of a particle moving at speed *u* is

$$p = \gamma_{\rm p} m u$$
$$\gamma_{\rm p} = \frac{1}{\sqrt{1 - u^2/c^2}}$$

where the subscript p indicates that this is γ for a particle, not for a reference frame.

If $u \ll c$, the momentum approaches the Newtonian value of p = mu. As u approaches c, however, p approaches infinity.

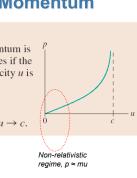
• For this reason, a force cannot accelerate a particle to a speed higher than *c*, because the particle's momentum becomes infinitely large as the speed approaches *c*.

Relativistic Momentum

Momentum

The law of conservation of momentum is valid in all inertial reference frames if the momentum of a particle with velocity *u* is $p = \gamma_p m u$, where

 $\gamma_{\rm p} = 1/\sqrt{1 - u^2/c^2}$ The momentum approaches ∞ as $u \rightarrow c$.



Non-relativistic

reaime. $K \approx \frac{1}{2} mu^2$

Relativistic Energy

The total energy E of a particle is

 $E = \gamma_{\rm p} mc^2 = E_0 + K = \text{rest energy} + \text{kinetic energy}$

This total energy consists of a rest energy

 $E_0 = mc^2$

and a relativistic expression for the kinetic energy

$$K = (\gamma_{\rm p} - 1)mc^2 = (\gamma_{\rm p} - 1)E_0$$

This expression for the kinetic energy is very nearly $\frac{1}{2}mu^2$ when $u \ll c$.

Relativistic Energy

Energy

The law of conservation of energy is valid in all inertial reference frames if the energy of a particle with velocity *u* is $E = \gamma_p mc^2 = E_0 + K$

Rest energy $E_0 = mc^2$

Kinetic energy $K = (\gamma_p - 1)mc^2$.

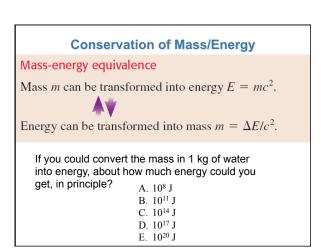
Conservation of Energy

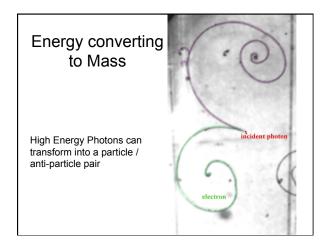
The creation and annihilation of particles with mass, processes strictly forbidden in Newtonian mechanics, are vivid proof that neither mass nor the Newtonian definition of energy is conserved.

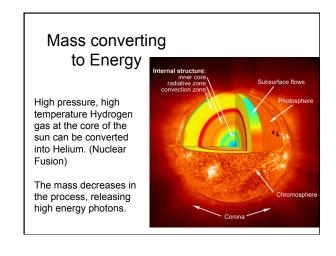
The *total* energy—the kinetic energy *and* the energy equivalent of mass—remains a conserved quantity.

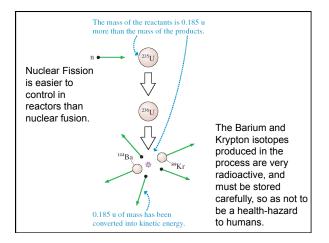
Law of conservation of total energy The energy $E = \sum E_i$ of an isolated system is conserved, where $E_i = (\gamma_p)_i m_i c^2$ is the total energy of particle *i*.

Mass and energy are not the same thing, but they are *equivalent* in the sense that mass can be transformed into energy and energy can be transformed into mass as long as the total energy is conserved.









Next Class

- We meet here on Wednesday 11am-12pm.
- I will discuss any questions about Problem Set 9, due Wednesday evening.
- I will finish up any outstanding issues with Chapter 37.
- I will review the course. Please email me if there is anything specific you'd like me to cover!