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Chapter 21 Superposition 

Chapter Goal: To understand and use the idea of 

superposition.
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 Two particles flying through the same point at the same 

time will collide and bounce apart.

Particles vs. Waves
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 But waves, unlike particles, can pass directly through 

each other!

Particles vs. Waves
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If wave 1 displaces a particle in the medium by D1 and 

wave 2 simultaneously displaces it by D2, the net 

displacement of the particle is D1 + D2.

The Principle of Superposition
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 The figure shows the 

superposition of two waves 

on a string as they pass 

through each other.

 The principle of 

superposition comes into 

play wherever the waves 

overlap.

 The solid line is the sum at 

each point of the two 

displacements at that 

point.

The Principle of Superposition



31/10/2013

2

© 2013 Pearson Education, Inc.

 Shown is an animation of 

a standing wave on a 

vibrating string.

 It’s not obvious from the 

animation, but this is 

actually a superposition 

of two waves.

 To understand this, consider two sinusoidal waves with 

the same frequency, wavelength, and amplitude

traveling in opposite directions.

Standing Waves

[animation from http://www.answers.com/topic/wave ]
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Standing Waves

Node Antinode

[image from http://www.edu.pe.ca/gray/class_pages/krcutcliffe/physics521/14waves/applets/Standing%20Waves1.htm ]

© 2013 Pearson Education, Inc.

 The figure has collapsed 

several graphs into a 

single graphical 

representation of a 

standing wave.

 A striking feature of a 

standing-wave pattern is 

the existence of nodes, 

points that never move! 

 The nodes are spaced 

/2 apart.

 Halfway between the nodes are the antinodes where the 

particles in the medium oscillate with maximum displacement.

Standing Waves
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 In Chapter 20 you 

learned that the 

intensity of a wave is 

proportional to the 

square of the 

amplitude: I  A2.

 Intensity is maximum 

at points of constructive 

interference and zero 

at points of destructive 

interference.

Standing Waves
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 This photograph 

shows the Tacoma 

Narrows suspension 

bridge just before it 

collapsed.

 Aerodynamic forces 

caused the amplitude 

of a particular standing 

wave of the bridge to 

increase dramatically.

 The red line shows the original line of the deck of the 

bridge.

Standing Waves
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 A sinusoidal wave traveling to the right along the 

x-axis with angular frequency   2f, wave number 

k  2/ and amplitude a is:

 An equivalent wave traveling to the left is: 

 We previously used the symbol A for the wave 

amplitude, but here we will use a lowercase a to 

represent the amplitude of each individual wave and 

reserve A for the amplitude of the net wave. 

The Mathematics of Standing Waves

http://www.answers.com/topic/wave
http://www.edu.pe.ca/gray/class_pages/krcutcliffe/physics521/14waves/applets/Standing Waves1.htm
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 According to the principle of superposition, the net 

displacement of the medium when both waves are 

present is the sum of DR and DL:

 We can simplify this by using a trigonometric identity, 

and arrive at: 

 Where the amplitude function A(x) is defined as:

 The amplitude reaches a maximum value of Amax = 2a

at points where sin kx = 1.

The Mathematics of Standing Waves
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 Shown is the graph of 

D(x,t) at several 

instants of time.

 The nodes occur at 

xm = m/2, where m is 

an integer.

The Mathematics of Standing Waves
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 A string with a large linear density is connected to one 

with a smaller linear density.

 The tension is the same in both strings, so the wave 

speed is slower on the left, faster on the right.

 When a wave 

encounters such a 

discontinuity, some 

of the wave’s energy 

is transmitted forward 

and some is reflected.

Waves on a String with a Discontinuity

[animation from http://www.acs.psu.edu/drussell/Demos/reflect/reflect.html ]
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 Below, a wave encounters discontinuity at which the 

wave speed decreases.

 In this case, the reflected pulse is inverted.

 We say that the 

reflected wave 

has a phase change 

of  upon reflection.

Waves on a String with a Discontinuity

[animation from http://www.acs.psu.edu/drussell/Demos/reflect/reflect.html ]
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When a wave reflects from a 

boundary, the reflected wave 

is inverted, but has the same 

amplitude.

Waves on a String with a Boundary

[animation from http://www.acs.psu.edu/drussell/Demos/reflect/reflect.html ]
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 The figure shows a 

string of length L tied 

at x = 0 and x = L.

 Reflections at the 

ends of the string 

cause waves of equal 

amplitude and 

wavelength to travel 

in opposite directions 

along the string.

 These are the 

conditions that cause 

a standing wave!

Creating Standing Waves

http://www.acs.psu.edu/drussell/Demos/reflect/reflect.html
http://www.acs.psu.edu/drussell/Demos/reflect/reflect.html
http://www.acs.psu.edu/drussell/Demos/reflect/reflect.html
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For a string of fixed length L, the boundary conditions 

can be satisfied only if the wavelength has one of the 

values:

Because f = v for a sinusoidal wave, the oscillation 

frequency corresponding to wavelength m is:

The lowest allowed frequency is called the fundamental 

frequency: f1 = v/2L.

Standing Waves on a String
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 Shown are various 

standing waves on a 

string of fixed length L.

 These possible 

standing waves are 

called the modes of 

the string, or 

sometimes the normal 

modes.

 Each mode, numbered 

by the integer m, has a 

unique wavelength 

and frequency.

Standing Waves on a String
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 m is the number of antinodes on the standing wave.

 The fundamental mode, with m = 1, has 1 = 2L.

 The frequencies of the normal modes form a series: 

f1, 2f1, 3f1, …

 The fundamental frequency f1 can be found as the 

difference between the frequencies of any two adjacent 

modes: f1 = f = fm+1 – fm.

 Below is a time-exposure photograph of the m = 3

standing wave on a string.

Standing Waves on a String
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 Standing electromagnetic waves can be established 

between two parallel mirrors that reflect light back and 

forth.

 A typical laser cavity has a length L  30 cm, and visible 

light has a wavelength   600 nm.

 The standing light wave in a typical laser cavity has a 

mode number m that is 2L/  1,000,000!

Standing Electromagnetic Waves
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 A long, narrow column of air, such as the air in a tube or 

pipe, can support a longitudinal standing sound wave. 

 A closed end of a column of air must be a displacement 

node, thus the boundary conditions—nodes at the 

ends—are the same as for a standing wave on a string.  

 It is often useful to think of sound as a pressure wave 

rather than a displacement wave: The pressure 

oscillates around its equilibrium value. 

 The nodes and antinodes of the pressure wave are 

interchanged with those of the displacement wave.

Standing Sound Waves
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Standing Sound Wave

http://faraday.physics.utoronto.ca/IYearLab/Intros/StandingWaves/Flash/long_wave.html

http://faraday.physics.utoronto.ca/IYearLab/Intros/StandingWaves/Flash/long_wave.html
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Shown are 

displacement and 

pressure graphs for the 

first three standing-

wave modes of a tube 

closed at both ends:

Standing Sound Waves
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Shown are 

displacement and 

pressure graphs for the 

first three standing-

wave modes of a tube 

open at both ends:

Standing Sound Waves
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Shown are 

displacement and 

pressure graphs for the 

first three standing-

wave modes of a tube 

open at one end but 

closed at the other:

Standing Sound Waves
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 Instruments such as the harp, 

the piano, and the violin have 

strings fixed at the ends and 

tightened to create tension.

 A disturbance generated on the 

string by plucking, striking, or 

bowing it creates a standing 

wave on the string.

 The fundamental frequency is the musical note you 

hear when the string is sounded:

where Ts is the tension in the string and  is its linear 

density.

Musical Instruments
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 With a wind instrument, blowing into the mouthpiece 

creates a standing sound wave inside a tube of air.

 The player changes the notes by using her fingers to 

cover holes or open valves, changing the length of the 

tube and thus its fundamental frequency:

 In both of these equations, v is the speed of sound in 

the air inside the tube.

 Overblowing wind instruments can sometimes produce 

higher harmonics such as f2  2f1 and f3  3f1.

Musical Instruments

for an open-closed tube 

instrument, such as a clarinet

for an open-open tube instrument, 

such as a flute


