

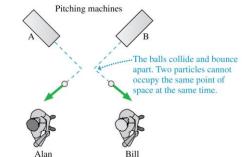
Chapter 21 Superposition

Chapter Goal: To understand and use the idea of superposition.

© 2013 Pearson Education, Inc.

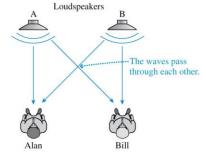
Particles vs. Waves

• Two particles flying through the same point at the same time will collide and bounce apart.



Particles vs. Waves

 But waves, unlike particles, can pass directly through each other!



The Principle of Superposition

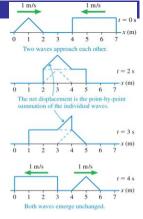
If wave 1 displaces a particle in the medium by D_1 and wave 2 simultaneously displaces it by D_2 , the net displacement of the particle is $D_1 + D_2$.

Principle of superposition When two or more waves are *simultaneously* present at a single point in space, the displacement of the medium at that point is the sum of the displacements due to each individual wave.

The Principle of Superposition

- The figure shows the superposition of two waves on a string as they pass through each other.
- The principle of superposition comes into play wherever the waves overlap.
- The solid line is the sum at each point of the two displacements at that point.

© 2013 Pearson Education, Inc

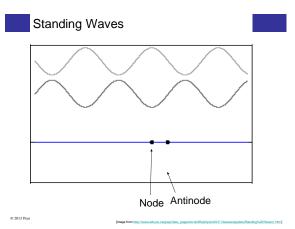


© 2013 Pearson Education, Inc

© 2013 Pearson E

Standing Waves

- Shown is an animation of a standing wave on a vibrating string.
- It's not obvious from the animation, but this is actually a superposition of two waves.
- To understand this, consider two sinusoidal waves with the same frequency, wavelength, and amplitude traveling in opposite directions.



Standing Waves

© 2013 Pearson Education, Inc

- The figure has collapsed several graphs into a single graphical representation of a standing wave.
- A striking feature of a standing-wave pattern is the existence of nodes, points that never move!
- The nodes are spaced λ/2 apart.
- Halfway between the nodes are the antinodes where the particles in the medium oscillate with maximum displacement.

 $0 \quad \frac{1}{2}\lambda \quad \lambda \quad \frac{3}{2}\lambda \quad 2\lambda$

Antinodes

The nodes and antinodes are spaced $\lambda/2$ apart.

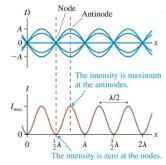
© 2013 Pearson Education, Inc.

Standing Waves

© 2013 Pearson E

© 2013 Pearson Education, Inc

on. In-



- In Chapter 20 you learned that the intensity of a wave is proportional to the square of the amplitude: I ∝ A².
- Intensity is maximum at points of constructive interference and zero at points of destructive interference.

Standing Waves

- This photograph shows the Tacoma Narrows suspension bridge just before it collapsed.
- Aerodynamic forces caused the amplitude of a particular standing wave of the bridge to increase dramatically.
- The red line shows the original line of the deck of the bridge.

The Mathematics of Standing Waves

• A sinusoidal wave traveling to the right along the *x*-axis with angular frequency $\omega = 2\pi f$, wave number $k = 2\pi \lambda$ and amplitude *a* is:

$D_{\rm R} = a\sin(kx - \omega t)$

An equivalent wave traveling to the left is:

$D_{\rm L} = a \sin(kx + \omega t)$

 We previously used the symbol A for the wave amplitude, but here we will use a lowercase a to represent the amplitude of each individual wave and reserve A for the amplitude of the net wave.

© 2013 Pearson Education, Inc.

The Mathematics of Standing Waves

 According to the principle of superposition, the net displacement of the medium when both waves are present is the sum of D_R and D_L:

 $D(x, t) = D_{\rm R} + D_{\rm L} = a\sin(kx - \omega t) + a\sin(kx + \omega t)$

 We can simplify this by using a trigonometric identity, and arrive at:

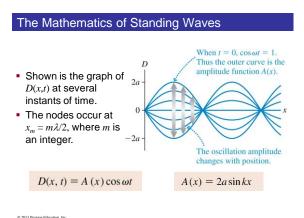
 $D(x, t) = A(x) \cos \omega t$

• Where the **amplitude function** *A*(*x*) is defined as:

$$A(x) = 2a\sin kx$$

• The amplitude reaches a maximum value of $A_{\text{max}} = 2a$ at points where sin kx = 1.

© 2013 Pearson Education, Inc.



Waves on a String with a Discontinuity

- A string with a large linear density is connected to one with a smaller linear density.
- The tension is the same in both strings, so the wave speed is slower on the left, faster on the right.
- When a wave encounters such a discontinuity, some of the wave's energy is transmitted forward and some is reflected.

© 2013 Pearson Education, Inc.

© 2013 Pe

Waves on a String with a Discontinuity

- Below, a wave encounters discontinuity at which the wave speed decreases.
- In this case, the reflected pulse is inverted.
- We say that the reflected wave has a phase change of π upon reflection.

Waves on a String with a Boundary

When a wave reflects from a boundary, the reflected wave is inverted, but has the same amplitude.

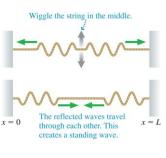
Creating Standing Waves

 The figure shows a string of length L tied at x = 0 and x = L.

© 2013 Pearson Education. In-

- Reflections at the ends of the string cause waves of equal amplitude and wavelength to travel in opposite directions along the string.
- These are the conditions that cause a standing wave!

e Education Inc



Standing Waves on a String

For a string of fixed length *L*, the boundary conditions can be satisfied only if the wavelength has one of the values:

$$\lambda_m = \frac{2L}{m} \qquad m = 1, 2, 3, 4, \dots$$

Because $\lambda f = v$ for a sinusoidal wave, the oscillation frequency corresponding to wavelength λ_m is:

$$f_m = \frac{v}{\lambda_m} = \frac{v}{2L/m} = m\frac{v}{2L}$$
 $m = 1, 2, 3, 4, ...$

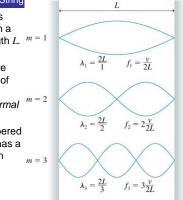
The lowest allowed frequency is called the **fundamental frequency**: $f_1 = v/2L$.

© 2013 Pearson Education, Inc.

 Shown are various standing waves on a string of fixed length L. m = 1

- These possible standing waves are called the modes of the string, or sometimes the normal m = modes.
- Each mode, numbered by the integer *m*, has a unique wavelength and frequency.

© 2013 Pearson Education. In

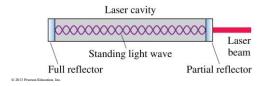


Standing Waves on a String

- *m* is the number of *antinodes* on the standing wave.
- The fundamental mode, with m = 1, has $\lambda_1 = 2L$.
- The frequencies of the normal modes form a series: $f_1, 2f_1, 3f_1, \ldots$
- The fundamental frequency f_1 can be found as the *difference* between the frequencies of any two adjacent modes: $f_1 = \Delta f = f_{m+1} f_m$.
- Below is a time-exposure photograph of the m = 3 standing wave on a string.

Standing Electromagnetic Waves

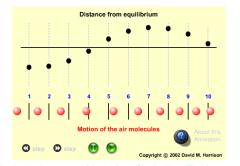
- Standing electromagnetic waves can be established between two parallel mirrors that reflect light back and forth.
- A typical laser cavity has a length L ≈ 30 cm, and visible light has a wavelength λ ≈ 600 nm.
- The standing light wave in a typical laser cavity has a mode number *m* that is $2L/\lambda \approx 1,000,000!$



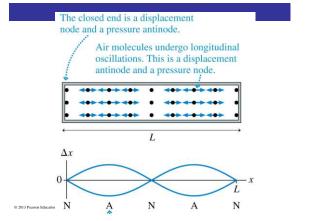
Standing Sound Waves

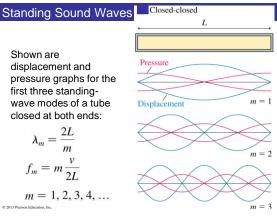
- A long, narrow column of air, such as the air in a tube or pipe, can support a longitudinal standing sound wave.
- A closed end of a column of air must be a displacement node, thus the boundary conditions—nodes at the ends—are the same as for a standing wave on a string.
- It is often useful to think of sound as a pressure wave rather than a displacement wave: The pressure oscillates around its equilibrium value.
- The nodes and antinodes of the pressure wave are interchanged with those of the displacement wave.

Standing Sound Wave

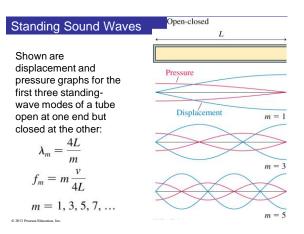


http://faraday.physics.utoronto.ca/lYearLab/Intros/StandingWaves/Flash/long_wave.html





Standing Sound Waves Shown are displacement and pressure graphs for the first three standingwave modes of a tube open at both ends: $\lambda_m = \frac{2L}{m}$ $f_m = m \frac{v}{2L}$ m = 1, 2, 3, 4, ...



Musical Instruments

- Instruments such as the harp, the piano, and the violin have strings fixed at the ends and tightened to create tension.
- A disturbance generated on the string by plucking, striking, or bowing it creates a standing wave on the string.
- The fundamental frequency is the musical note you hear when the string is sounded:

$$f_1 = \frac{v}{2L} = \frac{1}{2L} \sqrt{\frac{T_s}{\mu}}$$

where $T_{\rm s}$ is the tension in the string and μ is its linear density.

Musical Instruments

 $f_1 =$

- With a wind instrument, blowing into the mouthpiece creates a standing sound wave inside a tube of air.
- The player changes the notes by using her fingers to cover holes or open valves, changing the length of the tube and thus its fundamental frequency:

$$\frac{v}{2L}$$
 for an open-open tube instrument, such as a flute

$$f_1 = \frac{v}{4L}$$
 for an open-closed tube instrument, such as a clarinet

- In both of these equations, v is the speed of sound in the air *inside* the tube.
- Overblowing wind instruments can sometimes produce higher harmonics such as $f_2 = 2f_1$ and $f_3 = 3f_1$.