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Chapter 21 Superposition 

Chapter Goal: To understand and use the idea of 

superposition.
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 Two particles flying through the same point at the same 

time will collide and bounce apart.

Particles vs. Waves
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 But waves, unlike particles, can pass directly through 

each other!

Particles vs. Waves
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If wave 1 displaces a particle in the medium by D1 and 

wave 2 simultaneously displaces it by D2, the net 

displacement of the particle is D1 + D2.

The Principle of Superposition
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 The figure shows the 

superposition of two waves 

on a string as they pass 

through each other.

 The principle of 

superposition comes into 

play wherever the waves 

overlap.

 The solid line is the sum at 

each point of the two 

displacements at that 

point.

The Principle of Superposition
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 Shown is an animation of 

a standing wave on a 

vibrating string.

 It’s not obvious from the 

animation, but this is 

actually a superposition 

of two waves.

 To understand this, consider two sinusoidal waves with 

the same frequency, wavelength, and amplitude

traveling in opposite directions.

Standing Waves

[animation from http://www.answers.com/topic/wave ]
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Standing Waves

Node Antinode

[image from http://www.edu.pe.ca/gray/class_pages/krcutcliffe/physics521/14waves/applets/Standing%20Waves1.htm ]
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 The figure has collapsed 

several graphs into a 

single graphical 

representation of a 

standing wave.

 A striking feature of a 

standing-wave pattern is 

the existence of nodes, 

points that never move! 

 The nodes are spaced 

/2 apart.

 Halfway between the nodes are the antinodes where the 

particles in the medium oscillate with maximum displacement.

Standing Waves
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 In Chapter 20 you 

learned that the 

intensity of a wave is 

proportional to the 

square of the 

amplitude: I  A2.

 Intensity is maximum 

at points of constructive 

interference and zero 

at points of destructive 

interference.

Standing Waves
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 This photograph 

shows the Tacoma 

Narrows suspension 

bridge just before it 

collapsed.

 Aerodynamic forces 

caused the amplitude 

of a particular standing 

wave of the bridge to 

increase dramatically.

 The red line shows the original line of the deck of the 

bridge.

Standing Waves
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 A sinusoidal wave traveling to the right along the 

x-axis with angular frequency   2f, wave number 

k  2/ and amplitude a is:

 An equivalent wave traveling to the left is: 

 We previously used the symbol A for the wave 

amplitude, but here we will use a lowercase a to 

represent the amplitude of each individual wave and 

reserve A for the amplitude of the net wave. 

The Mathematics of Standing Waves

http://www.answers.com/topic/wave
http://www.edu.pe.ca/gray/class_pages/krcutcliffe/physics521/14waves/applets/Standing Waves1.htm
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 According to the principle of superposition, the net 

displacement of the medium when both waves are 

present is the sum of DR and DL:

 We can simplify this by using a trigonometric identity, 

and arrive at: 

 Where the amplitude function A(x) is defined as:

 The amplitude reaches a maximum value of Amax = 2a

at points where sin kx = 1.

The Mathematics of Standing Waves
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 Shown is the graph of 

D(x,t) at several 

instants of time.

 The nodes occur at 

xm = m/2, where m is 

an integer.

The Mathematics of Standing Waves
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 A string with a large linear density is connected to one 

with a smaller linear density.

 The tension is the same in both strings, so the wave 

speed is slower on the left, faster on the right.

 When a wave 

encounters such a 

discontinuity, some 

of the wave’s energy 

is transmitted forward 

and some is reflected.

Waves on a String with a Discontinuity

[animation from http://www.acs.psu.edu/drussell/Demos/reflect/reflect.html ]
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 Below, a wave encounters discontinuity at which the 

wave speed decreases.

 In this case, the reflected pulse is inverted.

 We say that the 

reflected wave 

has a phase change 

of  upon reflection.

Waves on a String with a Discontinuity

[animation from http://www.acs.psu.edu/drussell/Demos/reflect/reflect.html ]
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When a wave reflects from a 

boundary, the reflected wave 

is inverted, but has the same 

amplitude.

Waves on a String with a Boundary

[animation from http://www.acs.psu.edu/drussell/Demos/reflect/reflect.html ]
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 The figure shows a 

string of length L tied 

at x = 0 and x = L.

 Reflections at the 

ends of the string 

cause waves of equal 

amplitude and 

wavelength to travel 

in opposite directions 

along the string.

 These are the 

conditions that cause 

a standing wave!

Creating Standing Waves

http://www.acs.psu.edu/drussell/Demos/reflect/reflect.html
http://www.acs.psu.edu/drussell/Demos/reflect/reflect.html
http://www.acs.psu.edu/drussell/Demos/reflect/reflect.html
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For a string of fixed length L, the boundary conditions 

can be satisfied only if the wavelength has one of the 

values:

Because f = v for a sinusoidal wave, the oscillation 

frequency corresponding to wavelength m is:

The lowest allowed frequency is called the fundamental 

frequency: f1 = v/2L.

Standing Waves on a String
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 Shown are various 

standing waves on a 

string of fixed length L.

 These possible 

standing waves are 

called the modes of 

the string, or 

sometimes the normal 

modes.

 Each mode, numbered 

by the integer m, has a 

unique wavelength 

and frequency.

Standing Waves on a String
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 m is the number of antinodes on the standing wave.

 The fundamental mode, with m = 1, has 1 = 2L.

 The frequencies of the normal modes form a series: 

f1, 2f1, 3f1, …

 The fundamental frequency f1 can be found as the 

difference between the frequencies of any two adjacent 

modes: f1 = f = fm+1 – fm.

 Below is a time-exposure photograph of the m = 3

standing wave on a string.

Standing Waves on a String
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 Standing electromagnetic waves can be established 

between two parallel mirrors that reflect light back and 

forth.

 A typical laser cavity has a length L  30 cm, and visible 

light has a wavelength   600 nm.

 The standing light wave in a typical laser cavity has a 

mode number m that is 2L/  1,000,000!

Standing Electromagnetic Waves
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 A long, narrow column of air, such as the air in a tube or 

pipe, can support a longitudinal standing sound wave. 

 A closed end of a column of air must be a displacement 

node, thus the boundary conditions—nodes at the 

ends—are the same as for a standing wave on a string.  

 It is often useful to think of sound as a pressure wave 

rather than a displacement wave: The pressure 

oscillates around its equilibrium value. 

 The nodes and antinodes of the pressure wave are 

interchanged with those of the displacement wave.

Standing Sound Waves

© 2013 Pearson Education, Inc.

Standing Sound Wave

http://faraday.physics.utoronto.ca/IYearLab/Intros/StandingWaves/Flash/long_wave.html

http://faraday.physics.utoronto.ca/IYearLab/Intros/StandingWaves/Flash/long_wave.html
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Shown are 

displacement and 

pressure graphs for the 

first three standing-

wave modes of a tube 

closed at both ends:

Standing Sound Waves
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Shown are 

displacement and 

pressure graphs for the 

first three standing-

wave modes of a tube 

open at both ends:

Standing Sound Waves
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Shown are 

displacement and 

pressure graphs for the 

first three standing-

wave modes of a tube 

open at one end but 

closed at the other:

Standing Sound Waves
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 Instruments such as the harp, 

the piano, and the violin have 

strings fixed at the ends and 

tightened to create tension.

 A disturbance generated on the 

string by plucking, striking, or 

bowing it creates a standing 

wave on the string.

 The fundamental frequency is the musical note you 

hear when the string is sounded:

where Ts is the tension in the string and  is its linear 

density.

Musical Instruments
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 With a wind instrument, blowing into the mouthpiece 

creates a standing sound wave inside a tube of air.

 The player changes the notes by using her fingers to 

cover holes or open valves, changing the length of the 

tube and thus its fundamental frequency:

 In both of these equations, v is the speed of sound in 

the air inside the tube.

 Overblowing wind instruments can sometimes produce 

higher harmonics such as f2  2f1 and f3  3f1.

Musical Instruments

for an open-closed tube 

instrument, such as a clarinet

for an open-open tube instrument, 

such as a flute


