Class 3, Sections 21.5-21.8 Preclass Notes

physics

FOR SCIENTISTS AND ENGINEERS

Interference in One Dimension

- A sinusoidal wave traveling to the right along the x-axis has a displacement:

$$
D=a \sin \left(k x-\omega t+\phi_{0}\right)
$$

- The phase constant ϕ_{0} tells us what the source is doing at $t=0$.
(a) Snapshot graph at $t=0$ for $\phi_{0}=0 \mathrm{rad}$

Constructive Interference
$D_{1}=a \sin \left(k x_{1}-\omega t+\phi_{10}\right)$
$D_{2}=a \sin \left(k x_{2}-\omega t+\phi_{20}\right)$
$D=D_{1}+D_{2}$

- The two waves are in phase, meaning that

$$
D_{1}(x)=D_{2}(x)
$$

- The resulting amplitude is $A=2 a$ for maximum constructive interference.

Their superposition produces a traveling wave moving to the right with amplitude $2 a$. This is maximum constructive interference.

Interference in One Dimension
The pattern resulting from the superposition of two waves is often called interference. In this section we will look at the interference of two waves traveling in the same direction.

Two overlapped sound waves

2013 peamenemen Speaker 2 Speaker 1 Point of detection

Interference in One Dimension

- A sinusoidal wave traveling to the right along the x -axis has a displacement:

$$
D=a \sin \left(k x-\omega t+\phi_{0}\right)
$$

- The phase constant ϕ_{0} tells us what the source is doing at $t=0$.
(b) Snapshot graph at $t=0$ for $\phi_{0}=\pi / 2 \mathrm{rad}$

Destructive Interference These two waves rer out of phase. The crests of one wave are aligned The crests of one wave are aligned
with the troughs of the other. Wave 2
$D_{1}=a \sin \left(k x_{1}-\omega t+\phi_{10}\right)$
$D_{2}=a \sin \left(k x_{2}-\omega t+\phi_{20}\right)$
$D=D_{1}+D_{2}$

- The two waves are out of phase, meaning that

$$
D_{1}(x)=-D_{2}(x) .
$$

- The resulting amplitude is A = 0 for perfect destructive interference.

The Mathematics of Interference

- As two waves of equal amplitude and frequency travel together along the x-axis, the net displacement of the medium is:

$$
\begin{aligned}
D=D_{1}+D_{2} & =a \sin \left(k x_{1}-\omega t+\phi_{10}\right)+a \sin \left(k x_{2}-\omega t+\phi_{20}\right) \\
& =a \sin \phi_{1}+a \sin \phi_{2}
\end{aligned}
$$

- We can use a trigonometric identity to write the net displacement as:

$$
D=\left[2 a \cos \left(\frac{\Delta \phi}{2}\right)\right] \sin \left(k x_{\text {avg }}-\omega t+\left(\phi_{0}\right)_{\text {avg }}\right)
$$

Where $\Delta \phi=\phi_{1}-\phi_{2}$ is the phase difference between the two waves.

Interference in One Dimension

Speaker 2

- Shown are two identical sources located one wavelength apart:

$$
\Delta x=\lambda
$$

- The two waves are "in step" with $\Delta \phi=2 \pi$, so we have maximum constructive interference with $A=2 a$.

The two waves are in phase ($\Delta \phi=2 \pi \mathrm{rad}$) and interfere constructively.

- It is entirely possible, of course, that the two waves are neither exactly in phase nor exactly out of phase.
- Shown are the calculated interference of two waves that differ in phase by $40^{\circ}, 90^{\circ}$ and 160°.

For $\Delta \phi=40^{\circ}$, the interference is constructive but not maximum constructive.

For $\Delta \phi=160^{\circ}$, the interference is destructive but not perfect destructive

The Mathematics of Interference

$$
D=\left[2 a \cos \left(\frac{\Delta \phi}{2}\right)\right] \sin \left(k x_{\text {avg }}-\omega t+\left(\phi_{0}\right)_{\text {avg }}\right)
$$

- The amplitude has a maximum value $A=2 a$

$$
\text { if } \cos (\Delta \phi / 2)= \pm 1
$$

- This is maximum constructive interference, when: $\Delta \phi=m \cdot 2 \pi \quad$ (maximum amplitude $A=2 a$) where m is an integer.
- Similarly, the amplitude is zero if $\cos (\Delta \phi / 2)=0$.
- This is perfect destructive interference, when:
$\Delta \phi=\left(m+\frac{1}{2}\right) \cdot 2 \pi \quad$ (minimum amplitude $A=0$)

Interference in One Dimension

- Shown are two identical sources located half a wavelength apart:

$$
\Delta x=\lambda / 2
$$

Identical sources are separated by half a elength.

- The two waves $\Delta \phi_{0}=0 \mathrm{rad}$ have phase difference $\Delta \phi=\pi$, so we have perfect destructive interference with $A=0$.
© 2013 Pearson Education, In.

Application: Thin-Film Optical Coatings

Application: Thin-Film Optical Coatings

- The phase difference between the two reflected waves is:

$$
\Delta \phi=2 \pi \frac{2 d}{\lambda / n}=2 \pi \frac{2 n d}{\lambda}
$$

where n is the index of refraction of the coating, d is the thickness, and λ is the wavelength of the light in vacuum or air.

- For a particular thin-film, constructive or destructive interference depends on the wavelength of the light:
$\lambda_{\mathrm{C}}=\frac{2 n d}{m} \quad m=1,2,3, \ldots$ (constructive interference)
$\lambda_{\mathrm{D}}=\frac{2 n d}{m-\frac{1}{2}} \quad m=1,2,3, \ldots \quad$ (destructive interference) Interference in Two and Three Dimensions

Two overlapping water waves create an interference pattern.

Interference in Two and Three Dimensions

- The mathematical description of interference in two or three dimensions is very similar to that of onedimensional interference.
- The conditions for constructive and destructive interference are:

Maximum constructive interference:

$$
\Delta \phi=2 \pi \frac{\Delta r}{\lambda}+\Delta \phi_{0}=m \cdot 2 \pi
$$

Perfect destructive interference:

$$
m=0,1,2, \ldots
$$

$$
\Delta \phi=2 \pi \frac{\Delta r}{\lambda}+\Delta \phi_{0}=m+\frac{1}{2} \cdot 2 \pi
$$

where Δr is the path-length difference.

A Circular or Spherical Wave

> The wave fronts are

Troughs are halfway

- A circular or spherical wave can be written:
$D(r, t)=a \sin \left(k r-\omega t+\phi_{0}\right)$ where r is the distance measured outward from the source.
- The amplitude a of a circular or spherical wave diminishes as r increases.

Interference in Two and Three Dimensions

Figure 21.30, page 612

Interference in One Dimension: Beats

The pattern resulting from the superposition of two waves is often called interference. In this section we will look at the interference of two waves traveling in the same direction.

Two overlapped sound waves

\qquad Speaker 2 Speaker 1

Beats

The figure shows the history graph for the superposition of the sound from two sources of equal amplitude a, but slightly different frequency.

Beats
http://faraday.physics.utoronto.ca/PVB/Harrison/Flash/ClassMechanics/Beats/Beats.html

Beats

"Beats" is a phenomenon that arises when 2 waves, such as sound waves, have almost identical frequencies.

To the left we show 2 tuning forks, each generating a sound pressure wave. The frequencies of the the 2 forks are slightly different.

We will be interested in the region where the 2 sound waves overlap each other; this region has a red circle around it in the figure.

Beats

Two Drums

Beats

Beats

Two Oscillators

Now we have 2 oscillators, 1 and 2 , whose periods are double the times between the striking of the two drums in the previous scene. The sum of the amplitudes of the 2 oscillators is shown as the blue ball.

Just as with the drums, when this scene was first entered the 2 oscillators were in phase. At that time the amplitude of the blue ball was twice the amplitude of each oscillator.

After about $\mathbf{4 0}$ seconds, the $\mathbf{2}$ oscillators are again in phase with each other.

About 20 seconds after the oscillators are in phase, they are out of phase with each other. At this time the amplitude of the sum is zero.

\qquad

Beats

The Mathematics

© 2013 Peasson Education, Inc.

Beats

Hearing the Sum

In the animations, we had very low frequencies

 of oscillation, so we could see what was happeningHere we have generated two sound waves of
frequencies 440 Hz and 442 Hz . Clicking on the round buttons to the left plays one or the other or both. Playing both clearly demonstrates the poth. Playing both clearly demonstrates the
phenon of beats. All clips play for 5 sec .

Clicking on the "Stop" button stops the sound.
The previous scene indicated that the beats should occur with a frequency of 1 Hz , but you can hear that it is $\mathbf{2 ~ H z}$. Why?
People with a good sense of pitch may be able to hear the difference between the 440 Hz tone and the 442 Hz one.

(3)

$\underset{\text { First }}{\substack{\text { Finene }}}$

