physics

FOR SCIENTISTS AND ENGINEERS

The Ray Model of Light

- Let us define a light ray as a line in the direction along which light energy is flowing.
- Any narrow beam of light, such as a laser beam, is actually a bundle of many parallel light rays.
- You can think of a single light ray as the limiting case of a laser beam whose diameter approaches zero.

The Ray Model of Light

Light interacts with matter in four different ways:
At an interface between two materials, light can be either reflected or refracted.
Within a material, light can be either scattered or absorbed.

Chapter 23 Ray Optics

Chapter Goal: To understand and apply the ray model of light.

The Ray Model of Light

- Light travels through a transparent material in straight lines called light rays.
- The speed of light is $v=c / n$, where n is the index of refraction of the material.
- Light rays do not interact with each other.
- Two rays can cross without either being affected in any way.

The Ray Model of Light

© 2013 Peasson Education, Inc.

- An object is a source of light rays.
- Rays originate from every point on the object, and each point sends rays in all directions.
- The eye "sees" an object when diverging bundles of rays from each point on the object enter the pupil and are focused to an image on the retina.

Objects

Apertures

- A camera obscura is a darkened room with a single, small hole, called an aperture.
- The geometry of the rays causes the image to be upside down.

- The object and image heights are related by:

$$
\frac{h_{\mathrm{i}}}{h_{\mathrm{o}}}=\frac{d_{\mathrm{i}}}{d_{\mathrm{o}}}
$$

(b) These rays don't make

The image is upside down. If the hole is sufficiently small, each point on the image corresponds to one point on the object.

Specular Reflection

The law of reflection states that:

1. The incident ray and the reflected ray are in the same plane normal to the surface, and
2. The angle of reflection equals the angle of incidence:

$$
\theta_{\mathrm{r}}=\theta_{\mathrm{i}}
$$

Ray Diagrams

- Rays originate from every point on an object and travel outward in all directions, but a diagram trying to show all these rays would be messy and confusing.
- To simplify the picture, we use a ray diagram showing only a few rays.

These are just a few of the infinitely many rays leaving the object.
\qquad

Specular Reflection of Light

Reflection from a flat, smooth surface, such as a mirror or a piece of polished metal, is called specular reflection.

Diffuse Reflection

- Most objects are seen by virtue of their reflected light.
" For a "rough" surface, the law of reflection is obeyed at each point but the irregularities of the surface cause the reflected rays to leave in many random directions.
- This situation is Each ray obeys the law of reflection called diffuse at that point, but the irregular surface reflection.
- It is how you see writing on a piece of paper, the wall, your hand, your friend, and so on.

\qquad Magnified view of surface

The Plane Mirror

Object distance Image distance

The reflected rays all diverge from P^{\prime}, which appears to be the source of the reflected rays. Your eye collects the bundle of diverging rays and "sees" the light coming from P^{\prime}.

Refraction

Two things happen when a light ray is incident on a smooth boundary between two transparent materials:

1. Part of the light reflects from the boundary, obeying the law of reflection.
2. Part of the light continues into the second medium. The transmission of light from one medium to another, but with a change in direction, is called refraction.

Indices of Refraction

TABLE 23.1 Indices of refraction

Medium	n
Vacuum	1.00 exactly
Air (actual)	1.0003
Air (accepted)	1.00
Water	1.33
Ethyl alcohol	1.36
Oil	1.46
Glass (typical)	1.50
Polystyrene plastic	1.59
Cubic zirconia	2.18
Diamond	2.41
Silicon (infrared)	3.50

$$
n=\frac{c}{v_{\text {medium }}}
$$

Your eye intercepts only a very small fraction of all the reflected rays.

Refraction

Fiber Optics

- The most important modern application of total internal reflection (TIR) is optical fibers.
- Light rays enter the glass fiber, then impinge on the inside wall of the glass at an angle above the critical angle, so they undergo TIR and remain inside the glass.
- The light continues to "bounce" its way down the tube as if it were inside a pipe.

Image Formation by Refraction

(a) A fish out of water

The rays that reach the eye are diverging from this point, the object.

Total Internal Reflection

- When a ray crosses a boundary into a material with a lower index of refraction, it bends away from the normal.
- The critical angle of incidence occurs when $\theta_{2}=90^{\circ}$:

$$
\theta_{\mathrm{c}}=\sin ^{-1} \frac{n_{2}}{n_{1}}
$$

- The refracted light vanishes at the critical angle and the reflection becomes 100\% for any angle $\theta_{1}>\theta_{c}$.

Fiber Optics

- In a practical optical fiber, a small-diameter glass core is surrounded by a layer of glass cladding.
- The glasses used for the core and the cladding have:

$$
n_{\text {core }}>n_{\text {cladding }}
$$

Image Formation by Refraction

(b) A fish in the aquarium

Refraction causes the rays
to bend at the boundary.

> Now the rays that reach the eye are diverging from this point, the image.

Image Formation by Refraction

- Rays emerge from a material with $n_{1}>n_{2}$.
- Consider only paraxial rays, for which θ_{1} and θ_{2} are quite small.
- In this case:

$$
s^{\prime}=\frac{n_{2}}{n_{1}} s
$$

where s is the object distance and s^{\prime} is the image distance.

Color and Dispersion

- A prism disperses white light into various colors.
- When a particular color of light enters a prism, its color does not change.

Dispersion

- The slight variation of index of refraction with wavelength is known as dispersion.
- Shown is the dispersion curves of two common glasses.
- Notice that \boldsymbol{n} is larger when the wavelength is shorter, thus violet light refracts more than red light.

Rainbows

Colored Filters and Colored Objects

- Green glass is green because it absorbs any light that is "not green."
- If a green filter and a red filter are overlapped, no light gets through.
- The green filter transmits only green light, which is then absorbed by the red filter because it is "not red."

Black where filters overlap Green filter

Light Scattering: Blue Skies and Red Sunsets

At midday the scattered light is mostly blue because molecules preferentially

- Light can scatter from small particles that are suspended in a medium.
- Rayleigh scattering from atoms and molecules depends inversely on the fourth power of the wavelength:
$I_{\text {scattered }} \propto \lambda^{-4}$
scatter shorter wavelengths.

At sunset, when the light has traveled much farther through the atmosphere, the light is mostly red because the shorter wavelengths have been lost to scattering.

Colored Filters and Colored Objects

- The figure below shows the absorption curve of chlorophyll, which is essential for photosynthesis in green plants.
- The chemical reactions of photosynthesis absorb red light and blue/violet light from sunlight and puts it to use.
- When you look at the green leaves on a tree, you're seeing the light that was reflected because it wasn't needed for photosynthesis.
\qquad

Light Scattering: Blue Skies and Red Sunsets

Sunsets are red because all the blue light has scattered as the sunlight passes through the atmosphere.

