

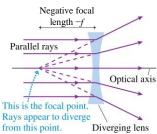
Lenses

- The photos below show parallel light rays entering two different lenses.
- The left lens, called a converging lens, causes the rays to refract toward the optical axis.
- The right lens, called a diverging lens, refracts parallel rays away from the optical axis.

2013 Pearson Education, Inc.

Converging Lenses

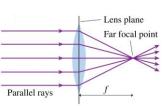
- A converging lens is thicker in the center than at the edges.
- The focal length *f* is the distance from the lens at which rays parallel to the optical axis converge.
- The focal length is a property of the lens, independent of how the lens is used.


© 2013 Pearson Education. In

Focal length *f* Parallel rays Optical axis Converging lens This is the focal point. Rays actually converge

Diverging Lenses

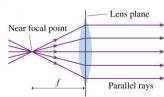
- A diverging lens is thicker at the edges than in the center.
- The focal length *f* is -1 times the distance from the lens at which rays parallel to the optical axis appear to diverge.
- The focal length is a property of the lens, independent of how the lens is used.


© 2013 Pearson Education. Inc

Thin Lenses: Ray Tracing

- Three situations form the basis for ray tracing through a thin **converging lens.**
- Situation 1: A ray initially parallel to the optic axis will go through the far focal point after passing through the lens.

© 2013 Pearson Education, In

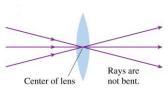

Any ray initially parallel to the optical axis will refract through the focal point on the far side of the lens.

Thin Lenses: Ray Tracing

 Three situations form the basis for ray tracing through a thin converging lens.

 Situation 2: A ray through the near focal point of a thin lens becomes parallel to the optic axis after passing through the lens.

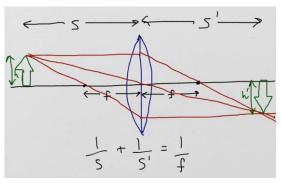
© 2013 Pearson Education Inc.



Any ray passing through the near focal point emerges from the lens parallel to the optical axis.

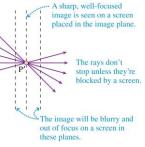
Thin Lenses: Ray Tracing

• Three situations form the basis for ray tracing through a thin **converging lens.**


 Situation 3: A ray through the center of a thin lens is neither bent nor displaced but travels in a straight line.

Any ray directed at the center of the lens passes through in a straight line.

© 2013 Pearson Education, Inc.


Thin Lenses: Ray Tracing

© 2013 Pearson Education, Inc

Image Formation

- The figure is a close-up view of the rays very near the image plane.
- To focus an image, you must either move the screen to coincide with the image plane or move the lens or object to make the image plane coincide with the screen.

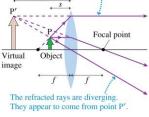
Lateral Magnification

- The image can be either larger or smaller than the object, depending on the location and focal length of the lens.
- The lateral magnification m is:

$$m \equiv \frac{h'}{h} = -\frac{s'}{s}$$

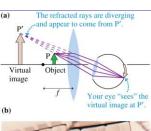
- A positive value of *m* indicates that the image is upright relative to the object.
- A negative value of *m* indicates that the image is inverted relative to the object.
- The absolute value of m gives the size ratio of the image and object: h'/h = |m|.

© 2013 Pearson Education, Inc.


Virtual Images

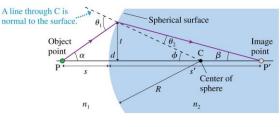
© 2013 Pearson Education. Inc

- Consider a converging lens for which the object is *inside* the focal point, at distance s < f.
- You can see all three rays appear to diverge from point P'.
- Point P' is an upright, virtual image of the object point P.


© 2013 Pearson Education, Inc

A ray along a line through the near focal point refracts parallel to the optical axis. s'

Virtual Images


- You can "see" a virtual image by looking through the lens.
- This is exactly what you do with a magnifying glass, microscope or binoculars.

Thin Lenses: Refraction Theory

- Consider a spherical boundary between two transparent media with indices of refraction n₁ and n₂.
- The sphere has radius of curvature *R* and is centered at point *C*.

© 2013 Pearson Education, Inc.

Thin Lenses: Refraction Theory

If an object is located at distance *s* from a spherical refracting surface, an image will be formed at distance *s'* given by:

$$\frac{n_1}{s} + \frac{n_2}{s'} = \frac{n_2 - n_1}{R}$$

TABLE 23.3 Sign convention for refracting surfaces

	Positive	Negative
R	Convex toward the object	Concave toward the object
<i>s'</i>	Real image, opposite side from object	Virtual image, same side as object

The Thin Lens Equation

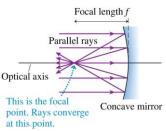
The object distance s is related to the image distance s' by:

$$\frac{1}{s} + \frac{1}{s'} = \frac{1}{f}$$
 (thin-lens equation)

where f is the focal length of the lens, which can be found from:

$$\frac{1}{f} = (n-1) \frac{1}{R_1} - \frac{1}{R_2}$$
 (lens maker's equation)

where R_1 is the radius of curvature of the first surface, and R_2 is the radius of curvature of the second surface, and the material surrounding the lens has n = 1.


Image Formation with Concave Spherical Mirrors

 The figure shows a concave mirror, a mirror in which the edges curve toward the light source.

© 2013 Pearson Education. In

 Rays parallel to the optical axis reflect and pass through the focal point of the mirror.

© 2013 Pearson Education. Inc

The Mirror Equation

S

For a spherical mirror with negligible thickness, the object and image distances are related by:

$$\frac{1}{s'} = \frac{1}{f}$$
 (mirror equation)

TABLE 23.5 Sign convention for spherical mirrors

Negative

from object

length *f* is related to the mirror's radius of curvature by: $f = \frac{R}{2}$

where the focal

 R, f
 Concave toward the object
 Convex toward the object

 s'
 Real image, same side
 Virtual image, opposite side

as object

Positive