

Chapter 28 The Electric Potential

Chapter Goal: To calculate and use the electric potential and electric potential energy.

Energy

- The kinetic energy of a system, K, is the sum of the kinetic energies $K_i = 1/2m_i v_i^2$ of all the particles in the system.
- The potential energy of a system, *U*, is the *interaction energy* of the system.
- The change in potential energy, ΔU , is -1 times the work done by the interaction forces:

$$\Delta U = U_{\rm f} - U_{\rm i} = -W_{\rm interaction forces}$$

 If all of the forces involved are conservative forces (such as gravity or the electric force) then the total energy K + U is conserved; it does not change with time.

© 2013 Pearson Education, Inc.

 Recall that the work done by a constant force depends on the angle θ between the force F and the displacement Δr.

 F_r General case $W = F_r \Delta r$ $= F \Delta r \cos \theta$

- If $\theta = 0^\circ$, then $W = F\Delta r$.
- If $\theta = 90^\circ$, then W = 0.
- If $\theta = 180^\circ$, then $W = -F\Delta r$.

The work is done by the component of \vec{F} in the direction of motion.

Gravitational Potential Energy

- Every conservative force is associated with a potential energy.
- In the case of gravity, the work done is:

$$W_{\rm grav} = mgy_{\rm i} - mgy_{\rm f}$$

• The change in gravitational potential energy is:

 $\Delta U_{grav} = -W_{grav}$

where

$$U_{grav} = U_0 + mgy$$

© 2013 Pearson Education, Inc.

The electric field does work on the particle. We can express the work as a change in electric potential energy.

Electric Potential Energy in a Uniform Field

- A positive charge *q* inside a capacitor speeds up as it "falls" toward the negative plate.
- There is a constant force *F* = *qE* in the direction of the displacement.
- The work done is:

$$W_{\text{elec}} = qEs_{\text{i}} - qEs_{\text{f}}$$

The change in electric potential energy is:

 $\Delta U_{\rm elec} = -W_{\rm elec}$

where

$$U_{\text{elec}} = U_0 + qEs$$

© 2013 Pearson Education, Inc.

© 2013 Pearson Education. In

from the negative plate.

Electric Potential Energy in a Uniform Field Energy The mechanical energy is constant. Emech K The potentialenergy graph is a straight line. U_0 U0 -5 0 Smax The particle reaches Kinetic and potential a turning point energy can be trans-© 2013 Pearson Edu formed into each other. where $U_{\text{elec}} = E_{\text{mech}}$.

Electric Potential Energy in a Uniform Field

$$U_{\text{elec}} = U_0 + qEs$$

A positively charged particle **gains** kinetic energy as it moves in the direction of **decreasing** potential energy.

© 2013 Pearson Education. Inc

The potential energy of a positive charge decreases in the direction of \vec{E} . The charge gains kinetic energy as it moves toward the negative plate.

The Potential Energy of Two Point Charges

Consider two point charges, q_1 and q_2 , separated by a distance *r*. The electric potential energy is

$$U_{\text{elec}} = \frac{Kq_1q_2}{r} = \frac{1}{4\pi\epsilon_0} \frac{q_1q_2}{r} \qquad \text{(two point charges)}$$

This is explicitly the energy of *the system*, not the energy of just q_1 or q_2 . Note that the potential energy of two charged particles approaches zero as $r \to \infty$.

© 2013 Pearson Education. In

The Electric Force Is a Conservative Force

Approximate the path using circular arcs and radial lines centered on q_1 .

The electric force is a *central force*. As a result, zero work is done as q_2 moves along a circular arc because the force is perpendicular to the displacement.

The work done by the electric force depends only on initial and final position, not the path followed.

The Potential Energy of Multiple Point Charges

Consider more than two point charges, the potential energy is the sum of the potential energies due to all pairs of charges:

$$U_{
m elec} = \sum_{i < j} rac{Kq_i q_j}{r_{ij}}$$

where r_{ij} is the distance between q_i and q_j . The summation contains the i < j restriction to ensure that each pair of charges is counted only once.

© 2013 Pearson Education, Inc.

The change in electric potential energy of the system is $\Delta U_{elec} = -W_{elec}$ if:

$$U_{\rm dipole} = -pE\cos\phi = -\vec{p}\cdot\vec{E}$$

© 2013 Pearson Education, Inc.

