Class 11, Sections 28.1-28.3 Preclass Notes

physics

FOR SCIENTISTS AND ENGINEERS

Energy

- The kinetic energy of a system, K, is the sum of the kinetic energies $K_{i}=1 / 2 m_{i} v_{i}^{2}$ of all the particles in the system.
- The potential energy of a system, U, is the interaction energy of the system.
- The change in potential energy, ΔU, is -1 times the work done by the interaction forces:

$$
\Delta U=U_{\mathrm{f}}-U_{\mathrm{i}}=-W_{\text {interaction forces }}
$$

- If all of the forces involved are conservative forces (such as gravity or the electric force) then the total energy $K+U$ is conserved; it does not change with time.

Work

If the force is not constant or the displacement is not along a linear path, we can calculate the work by dividing the path into many small segments.

$$
W=\sum_{j}\left(F_{s}\right)_{j} \Delta s_{j} \rightarrow \int_{s_{i}}^{s_{i}} F_{s} d s=\int_{\mathrm{i}} \vec{F} \cdot d \vec{s} \begin{aligned}
& \text { The work done in this } \\
& \text { nt of the } \\
& d s=\vec{F} \cdot d \vec{s} \text {. }
\end{aligned}
$$

Chapter 28 The Electric Potential

Chapter Goal: To calculate and use the electric potential and electric potential energy.

Work Done by a Constant Force

- Recall that the work done by a constant force depends on the angle θ between the force F and the displacement Δr.

- If $\theta=0^{\circ}$, then $W=F \Delta r$.
- If $\theta=0^{\circ}$, then $W=F \Delta r$. 1 . $\theta=90^{\circ}$, then $W=0$.
- If $\theta=180^{\circ}$, then $W=-F \Delta r$.

[^0]The work is done by the component of \vec{F} in the direction of motion.

The net force on the particle is down. It gains kinetic energy (i.e., speeds up) o anos reamen as it loses potential energy.

Gravitational Potential Energy

- Every conservative force is associated with a potential energy.
- In the case of gravity, the work done is:

$$
W_{\mathrm{grav}}=m g y_{\mathrm{i}}-m g y_{\mathrm{f}}
$$

- The change in gravitational potential energy is:

$$
\Delta \mathrm{U}_{\text {grav }}=-\mathrm{W}_{\text {grav }}
$$

where

$$
U_{g r a v}=U_{0}+m g y
$$

Electric Potential Energy in a Uniform Field

- A positive charge q inside a capacitor speeds up as it "falls" toward the negative plate.
- There is a constant force $F=q E$ in the direction of the displacement.
- The work done is:

$$
W_{\text {elec }}=q E s_{\mathrm{i}}-q E s_{\mathrm{f}}
$$

- The change in electric potential energy is:

$$
\Delta U_{\text {elec }}=-W_{\text {elec }}
$$

where

$$
U_{\text {elec }}=U_{0}+q E s
$$

Electric Potential Energy in a Uniform Field

$$
U_{\text {elec }}=U_{0}+q E s
$$

A negatively charged particle gains kinetic energy as it moves in the direction of decreasing potential energy.

The potential energy of a negative charge decreases in the direction opposite to \vec{E}. The charge gains kinetic energy as it moves away from the negative plate.

The electric field does work on the particle. We can express the work as a change in electric potential energy.

Electric Potential Energy in a Uniform Field

The potential energy of a positive charge decreases in the direction of \vec{E}. The charge gains kinetic energy as it moves toward the negative plate.

Electric Potential Energy in a Uniform Field

The Potential Energy of Two Point Charges

- Consider two like \begin{tabular}{l}
Fixed in

position

charges q_{1} and q_{2}.

- The electric field of q_{1}

Tushes q_{2} as it moves
from x_{i} to x_{f}.

- The work done is:

The force changes

with distance.
\end{tabular}

The electric field of q_{1} does work
on q_{2} as q_{2} moves from x_{i} to x_{f}.
$W_{\text {clec }}=\int_{x i}^{x_{i}} F_{\text {lo } 2} d x=\int_{x_{i}}^{x_{i}} \frac{K q_{1} q_{2}}{x^{2}} d x=\left.K q_{1} q_{2} \frac{-1}{x}\right|_{x_{i}} ^{x_{i}}=-\frac{K q_{1} q_{2}}{x_{i}}+\frac{K q_{1} q_{2}}{x_{i}}$

- The change in electric potential energy of the system is $\Delta U_{\text {elec }}=-W_{\text {elec }}$ if:

$$
U_{\mathrm{elec}}=\frac{K q_{1} q_{2}}{x}
$$

The Potential Energy of Two Point Charges

- Two like charges approach each other.
- Their total energy is $E_{\text {mech }}>0$.
- They gradually slow down until the distance separating them is $r_{\text {min }}$.
- This is the distance of closest approach.

The Electric Force Is a Conservative Force

The Potential Energy of Two Point Charges

Consider two point charges, q_{1} and q_{2}, separated by a distance r. The electric potential energy is

$$
U_{\text {elec }}=\frac{K q_{1} q_{2}}{r}=\frac{1}{4 \pi \epsilon_{0}} \frac{q_{1} q_{2}}{r} \quad \text { (two point charges) }
$$

This is explicitly the energy of the system, not the energy of just q_{1} or q_{2}.
Note that the potential energy of two charged particles approaches zero as $r \rightarrow \infty$.

The Potential Energy of Two Point Charges

- Two opposite charges are shot apart from one another with equal and opposite momenta.
- Their total energy is $E_{\text {mech }}<0$.
- They gradually slow down until the distance separating them is $r_{\text {max }}$.
- This is their maximum separation.

The Electric Force Is a Conservative Force

Approximate the path using circular arcs and radial lines centered on q_{1}.

The electric force is a central force. As a result, zero work is done as q_{2} moves along a circular arc because the force is perpendicular to the displacement.
The work done by the electric force depends only on initial and final position, not the path followed.

- 2013 Peasson Education, Inc.

The Potential Energy of Multiple Point Charges

Consider more than two point charges, the potential energy is the sum of the potential energies due to all pairs of charges:

$$
U_{\mathrm{elec}}=\sum_{i<j} \frac{K q_{i} q_{j}}{r_{i j}}
$$

where $r_{i j}$ is the distance between q_{i} and q_{i}. The summation contains the $i<j$ restriction to ensure that each pair of charges is counted only once.

The Potential Energy of a Dipole

$$
U_{\text {dipole }}=-p E \cos \phi=-\vec{p} \cdot \vec{E}
$$

Turning points for Energ

- The potential energy of a dipole is $\phi=0^{\circ}$ minimum at where the dipole is aligned with the electric field.
- A frictionless dipole with mechanical energy $E_{\text {mech }}$ will oscillate back and forth between turning points on either side of $\phi=0^{\circ}$.

2013 Peason Education, Inc

$$
W_{\text {elec }}=-p E \int_{\phi_{\mathrm{i}}}^{\phi_{\mathrm{r}}} \sin \phi d \phi=p \overrightarrow{\cos \phi_{\mathrm{f}}-p E \cos \phi_{\mathrm{i}}}
$$

- The change in electric potential energy of the system is $\Delta U_{\text {elec }}=-W_{\text {elec }}$ if:

$$
U_{\text {dipole }}=-p E \cos \phi=-\vec{p} \cdot \vec{E}
$$

- Consider a dipole in a uniform electric field.
- The forces F_{+}and F_{-} exert a torque on the dipole.
- The work done is:

$$
\text { is } \Delta U_{\text {elec }}=-W_{\text {elec }} \text { if: }
$$

[^0]:

