PHY132 Introduction to Physics II Class 11 – **Outline:**

- Electric Potential Energy of:
 - -Point Charges
 - -Dipoles
- Electric Potential: V
- Voltage: ΔV

Class 11 Preclass Quiz on MasteringPhysics

 74% got: Two positive charges are equal. Charge A has more electric potential energy.

Both of these charges have the **potential** to accelerate toward the negative plate, speeding up.

What is Potential Energy?

- A. mgh
- B. When an object has the *potential* to speed up.
- C. Voltage
- D. $\frac{1}{2} k(\Delta x)^2$

What is Potential Energy?

- An object has **potential energy** when it is in a situation in which, if it moves, the potential energy can drop as it gains kinetic energy.
- Gravitational potential energy is due to the gravity interaction between the earth and an object. It can be negative, and has an arbitrary zero point.
- Elastic potential energy (ch.10) is energy stored in a spring. It is always positive or zero, and is zero when the spring is in equilibrium ($\Delta x = 0$)

Class 11 Preclass Quiz on MasteringPhysics

 47% of students got: A positive and a negative charge are released from rest in vacuum. They move toward each other. As they do a negative potential energy becomes more negative.

Can be positive (for like charges)
Can be positive (for like charges)

$$U_{elec} = \frac{Kq_1q_2}{r} = \frac{1}{4\pi\epsilon_0} \frac{q_1q_2}{r}$$
 (two point charges)

Class 11 Preclass Quiz on MasteringPhysics

 72% of students got: The electric potential energy of a system of two point charges is proportional to the inverse of the distance between the two charges.

$$U_{\text{elec}} = \frac{Kq_1q_2}{r} = \frac{1}{4\pi\epsilon_0} \frac{q_1q_2}{r} \qquad \text{(two point charges)}$$

Class 11 Preclass Quiz on MasteringPhysics

 76% of students got: Rank in order, from most positive to most negative, the potential energies U_a to U_f of the six electric dipoles in the uniform electric field of the figure.

Class 11 Preclass Quiz – Student Comments...

- Jokes:
- "If Miley Cyrus was a physicist, I guess she'd be torquing."
- "Why was the electron so sad? Because it had nothing to be positive about!"
- "What is the name of the first electricity detective? Sherlock Ohms."

Energy

- The kinetic energy of a system, *K*, is the sum of the kinetic energies $K_i = 1/2m_iv_i^2$ of all the particles in the system.
- The potential energy of a system, *U*, is the *interaction energy* of the system.
- The change in potential energy, ∆U, is −1 times the work done by the interaction forces:

 $\Delta U = U_{\rm f} - U_{\rm i} = -W_{\rm interaction\ forces}$

 If all of the forces involved are conservative forces (such as gravity or the electric force) then the total energy K + U is conserved; it does not change with time.

Work Done by a Constant Force

 Recall that the work done by a constant force depends on the angle θ between the force F and the displacement Δr.

direction of motion.

- If $\theta = 0^{\circ}$, then $W = F \Delta r$.
- If $\theta = 90^\circ$, then W = 0.
- If $\theta = 180^{\circ}$, then $W = -F\Delta r$.

Gravitational Potential Energy

y

 y_i

 y_{f}

0

- Every conservative force is associated with a potential energy.
- In the case of gravity, the work done is:

$$W_{\rm grav} = mgy_{\rm i} - mgy_{\rm f}$$

 The change in gravitational potential energy is:

$$\Delta U_{grav} = -W_{grav}$$

where

$$U_{grav} = U_0 + mgy$$

The gravitational field does work on the particle. We can express the work as a change in gravitational potential energy.

The net force on the particle is down. It gains kinetic energy (i.e., speeds up) as it loses potential energy.

Electric Potential Energy in a Uniform Field

- A positive charge q inside a capacitor speeds up as it "falls" toward the negative plate.
- There is a constant force
 F = qE in the direction of the displacement.
- The work done is:

$$W_{\rm elec} = qEs_{\rm i} - qEs_{\rm f}$$

 The change in electric potential energy is:

$$\Delta U_{\rm elec} = -W_{\rm elec}$$

where

$$U_{\text{elec}} = U_0 + qEs$$

The electric field does work on the particle. We can express the work as a change in electric potential energy.

Electric Potential Energy in a Uniform Field

 $U_{\rm elec} = U_0 + qEs$

A positively charged particle gains kinetic energy as it moves in the direction of decreasing potential energy.

The potential energy of a positive charge decreases in the direction of \vec{E} . The charge gains kinetic energy as it moves toward the negative plate.

Electric Potential Energy in a Uniform Field

 $U_{\text{elec}} = U_0 + qEs$

A negatively charged particle gains kinetic energy as it moves in the direction of decreasing potential energy.

The potential energy of a negative charge decreases in the direction opposite to \vec{E} . The charge gains kinetic energy as it moves away from the negative plate.

Electric Potential Energy in a Uniform Field

- The figure shows the energy diagram for a positively charged particle in a uniform electric field.
- The potential energy increases linearly with distance, but the total mechanical energy E_{mech} is fixed.

A positive charge moves as shown. Its kinetic energy

- A. Increases.
- B. Remains constant.
- C. Decreases.

The Potential Energy of Two Point Charges

- Consider two like charges q₁ and q₂.
- The electric field of q₁ pushes q₂ as it moves from x_i to x_f.
- The work done is:

$$W_{\text{elec}} = \int_{x_{\text{i}}}^{x_{\text{f}}} F_{1 \text{ on } 2} \, dx = \int_{x_{\text{i}}}^{x_{\text{f}}} \frac{Kq_{1}q_{2}}{x^{2}} \, dx = Kq_{1}q_{2} \frac{-1}{x} \Big|_{x_{\text{i}}}^{x_{\text{f}}} = -\frac{Kq_{1}q_{2}}{x_{\text{f}}} + \frac{Kq_{1}q_{2}}{x_{\text{i}}}$$

• The change in electric potential energy of the system is $\Delta U_{\text{elec}} = -W_{\text{elec}}$ if:

$$U_{\text{elec}} = \frac{Kq_1q_2}{x}$$

The Potential Energy of Two Point Charges

Consider two point charges, q_1 and q_2 , separated by a distance *r*. The electric potential energy is

$$U_{\text{elec}} = \frac{Kq_1q_2}{r} = \frac{1}{4\pi\epsilon_0} \frac{q_1q_2}{r} \qquad \text{(two point charges)}$$

- This is explicitly the energy of the system, not the energy of just q₁ or q₂.
- Note that the potential energy of two charged particles approaches zero as $r \rightarrow \infty$.

The Potential Energy of Two Point Charges

- Two like charges approach each other.
- Their total energy is $E_{\text{mech}} > 0.$
- They gradually slow down until the distance separating them is r_{min}.
- This is the distance of closest approach.

The Potential Energy of Two Point Charges

- Average was 65.7%
- Standard deviation was 19%
- 14 students got 100%
- 24.4% got A
- 25.4% got B
- 16.5% got C
- 13.8% got D
- 20% got F

Test 1 Results

- Tests will be returned to you in Practicals this week.
- Please check your mark and, no later than 4pm on Friday, February 14, report concerns.
- Multiple-choice grades are calculated by Ms. Seeley in MP129. Please be aware that the answers you gave on the **bubble sheet** are the ones counted, not the ones you may have recorded on your question paper.
- Please compare your answer to the posted solution before coming to us with questions or complaints about the marking.

The Potential Energy of Multiple Point Charges

Consider more than two point charges, the potential energy is the sum of the potential energies due to all pairs of charges:

$$U_{
m elec} = \sum_{i < j} rac{K q_i q_j}{r_{ij}}$$

where r_{ij} is the distance between q_i and q_j . The summation contains the i < j restriction to ensure that each pair of charges is counted only once.

Conservation of energy:

$$E_{f} = E_{0}$$

 $K_{f} + U_{f} = K_{0} + U_{0}$
 $U_{p} = 0$ as the spheres
 get very far apart 0 0 0 $1 = 92 - 93 - 94 - 9 - 10 nC$
 $K_{0} = 0 \in released$ from
 $rest$
 $K_{0} = 0 = released$ from
 $rest$
 $K_{f} = U_{0}$
By symmetry, K_{f} will be
 $splito$ equally among
 4 sphores.
 $For - K_{fi} = \frac{U_{0}}{4}$
 $U_{s} = Kq_{i}^{2} (4(\frac{1}{0.01}) + 2(\frac{1}{0.01}))$
 $U_{s} = Kq_{i}^{2} (4(\frac{1}{0.01}) + 2(\frac{1}{0.01}))$
 $U_{s} = 4.87 \times (0^{-4} Joules)$
 $K_{i} = U_{0} = 1.22 \times 10^{-4} J = 1.01 Ts^{2}$
 $V_{f} = \sqrt{2K_{0}} = \sqrt{2(1.22 \times 10^{-9})^{2}} (0.49 m)$

The Potential Energy of a Dipole

- The potential energy of a dipole is *φ* = 0° minimum at where the dipole is aligned with the electric field.
- A frictionless dipole with mechanical energy E_{mech} will oscillate back and forth between turning points on either side of $\phi = 0^{\circ}$.

$$U_{\rm dipole} = -pE\cos\phi = -\vec{p}\cdot\vec{E}$$

The Electric Potential

 We define the electric potential V (or, for brevity, just the potential) as

$$V \equiv \frac{U_{q+\text{sources}}}{q} \qquad \begin{array}{c} |V_{\text{ote}} \\ \text{symbol for} \\ \text{potential is } V, \\ \text{and the unit is also } V. \end{array}$$

- This is NOT the same as electric potential energy. (different units, for one thing).
- The unit of electric potential is the joule per coulomb, which is called the volt V:

$$1 \text{ volt} = 1 \text{ V} \equiv 1 \text{ J/C}$$

The Electric Potential

- Test charge q is used as a probe to determine the electric potential, but the value of V is independent of q.
- The electric potential, like the electric field, is a property of the source charges.

The potential at this point is V.

The source charges alter the space around them by creating an electric potential.

Source charges

Using the Electric Potential

- A. Remains at the dot.
- B. Moves upward with steady speed.
- C. Moves upward with an increasing speed.
- D. Moves downward with a steady speed.
- E. Moves downward with an increasing speed.

Before Class 12 on Wednesday (my last class...)

- Please finish reading Knight Ch. 28
- Please do the short pre-class quiz on MasteringPhysics by tomorrow night.
- Something to think about. A battery is designed to supply a steady amount of which of the following quantities?

- Energy
- Power

(Hint: only one of these is correct!)

- Electric potential difference
- Electric current