PHY132 Introduction to Physics II

Class 3 - Outline:

- Ch. 21, sections 21.1-21.4
- The Principle of Superposition

- Standing Waves

- Nodes and Antinodes
- Musical Instruments

i-Clicker Discussion Question

Two wave pulses on a string approach each other at speeds of $1 \mathrm{~m} / \mathrm{s}$. How does the string look at $t=3 \mathrm{~s}$?

D.

Particles and Waves

- Particles cannot occupy the same space. They collide.

- Waves pass right through each other. They interfere.

[Animations from http://www.physicsclassroom.com/mmedia/newtlaws/mb.cfm and http://www.acs.psu.edu/drussell/demos/superposition/superposition.html]

The Principle of Superposition

If two or more waves combine at a given point, the resulting disturbance is the sum of the disturbances of the individual waves.

$$
D=D_{1}+D_{2}
$$

i-Clicker Discussion Question

Two wave pulses on a string approach each other at speeds of $1 \mathrm{~m} / \mathrm{s}$. How does the string look at $t=3 \mathrm{~s}$?

A.

B.

C.

D.

Reflection of Transverse Wave Pulse

- A pulse traveling to the right on a heavy string attached to a lighter string
- Speed suddenly increases

Reflection of Transverse Wave Pulse

- A pulse traveling to the right on a light string attached to a heavier string
- Speed suddenly decreases

Standing Waves on a String

Reflections at the ends of the string cause waves of equal amplitude and wavelength to travel in opposite directions along the string, which results in a standing wave.

The Mathematics of Standing Waves

According to the principle of superposition, the net displacement of a medium when waves with displacements D_{R} and D_{L} are present is
$D(x, t)=D_{R}+D_{L}=a \sin (k x \quad t)+a \sin (k x+t)$
We can simplify this by using a trigonometric identity, and arrive at:

$$
D(x, t)=A(x) \cos (t)
$$

$$
\text { where } \quad A(x)=2 a \sin (k x)
$$

For a standing wave, the pattern is not propagating!

Standing Wave:

The superposition of two 1-D sinusoidal

 waves traveling in opposite directions.

The Mathematics of Standing Waves

The amplitude reaches a maximum value of $A_{\max }=2 a$ at points where $\sin (k x)=1$.

i-Clicker Discussion Question

What is the wavelength of this standing wave?
A. 0.25 m .

B. 0.5 m .
C. 1.0 m .
D. 2.0 m .
E. Standing waves don't
have a wavelength.

Node Spacing on a String

The nodes and antinodes are spaced $\lambda / 2$ apart.

Copyright © 2004 Pearson Education, Inc., publishing as Addison Wesley

Standing Waves

The intensity is zero at the nodes.

- In Chapter 20 you learned that the intensity of a wave is proportional to the square of the amplitude: $I \propto A^{2}$.
- Intensity is maximum at points of constructive interference and zero at points of destructive interference.

Standing Waves in a Microwave Oven

- Microwaves are electromagnetic waves, which travel at the speed of light.
- I removed the turntable from my microwave oven, and poured egg whites into a flat plate

Standing Waves in a Microwave Oven

- The egg whites heat faster around the edges. This is because the microwaves attenuate as they travel through the egg.
- There also is a pattern of "hot spots". These are antinodes in 3-
 dimensional standing wave pattern

Standing Waves in a Microwave Oven

- I measured the distance between antinodes to be about $6 \mathrm{~cm} \pm 1 \mathrm{~cm}$
- This should be about $\lambda / 2$, so $\lambda=$ $12 \mathrm{~cm} \pm 2 \mathrm{~cm}$
- My microwave manual says in specifications that its cooking frequency is 2450 MHz

On a string of length L with fixed end points, $D(0, t)=0$ and $D(L, t)=0$

Only oscillations with specific wavelengths are allowed.

i-Clicker Discussion Question

What is the mode number of this standing wave?
A. 4.

B. 5 .
C. 6 .
D. Can't say without knowing what kind of wave it is.

Standing Waves on a String

There are three things to note about the normal modes of a string.

1. m is the number of antinodes on the standing wave.
2. The fundamental mode, with $m=1$, has $\lambda_{1}=2 L$.
3. The frequencies of the normal modes form a series: $f_{1}, 2 f_{1}$, $3 f_{1}, \ldots$ These are also called harmonics. $2 f_{1}$ is the "second harmonic", $3 f_{1}$ is the "third harmonic", etc.

Musical Instruments

- Instruments such as the harp, the piano, and the violin have strings fixed at the ends and tightened to create tension.
- A disturbance generated on the string by plucking, striking, or bowing it creates a standing
 wave on the string.
- The fundamental frequency is the musical note you hear when the string is sounded:

$$
f_{1}=\frac{v}{2 L}=\frac{1}{2 L} \sqrt{\frac{T_{\mathrm{s}}}{\mu}}
$$

where T_{s} is the tension in the string and μ is its linear density.

i-Clicker Discussion Question

The frequency of the third harmonic of a string is
A. One-third the frequency of the fundamental.
B. Equal to the frequency of the fundamental.
C. Three times the frequency of the fundamental.
D. Nine times the frequency of the fundamental.

Standing Electromagnetic Waves

- Standing electromagnetic waves can be established between two parallel mirrors that reflect light back and forth.
- A typical laser cavity has a length $L \approx 30 \mathrm{~cm}$, and visible light has a wavelength $\lambda \approx 600 \mathrm{~nm}$.
- The standing light wave in a typical laser cavity has a mode number m that is $2 L / \lambda \approx 1,000,000$!

Standing Sound Waves

- A long, narrow column of air, such as the air in a tube or pipe, can support a longitudinal standing sound wave.
- A closed end of a column of air must be a displacement node. Thus the boundary conditions nodes at the ends - are the same as for a standing wave on a string.
- It is often useful to think of sound as a pressure wave rather than a displacement wave. The pressure oscillates around its equilibrium value.
- The nodes and antinodes of the pressure wave are interchanged with those of the displacement wave.

Standing Sound Waves

$$
t=T / 4
$$

$$
t=T / 2
$$

Uniform pressure

No displacement

i-Clicker Discussion Question

An open-open tube of air has length L. Which is the displacement graph of the $m=3$
 standing wave in this tube?
A.

C.

B.

D.

i-Clicker Discussion Question

An open-closed tube of air of length L has the closed end on the right. Which is the displacement graph of
 the $m=3$ standing wave in this tube?

Example from a past test

A metal pipe, open at both ends, can create a standing wave in the second harmonic with a frequency of 483 Hz . What is the length of the pipe?

Closed-closed

$$
\begin{cases}\lambda_{m}=\frac{2 L}{m} & m=1,2,3,4, \ldots \\ f_{m}=m \frac{v}{2 L}=m f_{1} & \text { (open-open or closed-closed tube) }\end{cases}
$$

Musical Instruments

- With a wind instrument, blowing into the mouthpiece creates a standing sound wave inside a tube of air.
- The player changes the notes by using her fingers to cover holes or open valves, changing the length of the tube and thus its fundamental frequency:

$$
\begin{array}{ll}
f_{1}=\frac{v}{2 L} & \begin{array}{l}
\text { for an open-open tube instrument } \\
\text { such as a flute }
\end{array} \\
f_{1}=\frac{v}{4 L} & \begin{array}{l}
\text { for an open-closed tube } \\
\text { instrument, such as a clarinet }
\end{array}
\end{array}
$$

- In both of these equations, v is the speed of sound in the air inside the tube.
- Overblowing wind instruments can sometimes produce higher harmonics such as $f_{2}=2 f_{1}$ and $f_{3}=3 f_{1}$.

i-Clicker Discussion Question

At room temperature, the fundamental frequency of an open-open tube is 500 Hz . If taken outside on a cold winter day, the fundamental frequency will be
A. Less than 500 Hz .
B. 500 Hz .
C. More than 500 Hz .

Before Class 4 on Wednesday

- Please read Knight Ch. 21, sections 21.5-21.8 (finish the chapter)
- Please do the short pre-class quiz on MasteringPhysics by Tuesday evening.
- Something to think about: What is "constructive interference"? How can you interfere with something and increase its strength?

