PHY132 Introduction to Physics II Class 6 – **Outline:**

- Ch. 23, sections 23.1-23.5
- Reflection
- Refraction
- Total Internal Reflection
- Image Formation
- · Colour and Dispersion

http://physics.tutorvista.com/light/index-of-refraction.html

Review Clicker Question!! Do you remember?

Class 6 Preclass Quiz on MasteringPhysics

- This was due this morning at 8:00am
- 636 students submitted the quiz on time
- 94% got: "Specular Reflection" is reflection by a flat, smooth object. The "law of reflection" is obeyed.
- 69% got: "Dispersion" is when the index of refraction varies slightly with wavelength.
- 59% of students got: Whenever the ray bends away from the normal, it means the waves are speeding up. That means n₂ < n₁.
- 65% got: there is only a critical angle (for possible total internal reflection) when n₂ < n₁.

Class 6 Preclass Quiz – Student Comments...

- "curious to whether total internal reflection can work for other rays aside from the visible light spectrum."
- Harlow answer: Yes! In fact, that is how X-ray telescopes work. The speed of X-rays in glass is actually slightly higher than in a vacuum, so when X-rays are incident at a grazing angle, you can make them reflect.
- "Can you tell if a surface will have more reflection vs refraction?"
 Trefract
- Harlow answer: Yes, but it's beyond the scope of this course (it's called "Fresnel Equations" if you want to wiki it..)

Class 6 Preclass Quiz – Student Comments...

- "What is the difference between delta phi naught and delta phi? I know that delta phi naught is the phase difference of the sources and delta phi is the phase difference of the waves, but what does that mean conceptually?"
- Harlow answer: "phase" φ is the argument of the sine or cosine function. Δφ determines interference
- So, for the wave equation, $\phi = kx \omega t + \phi_0$. Every time ϕ changes by an integer multiple of 2π , the wave returns to the same state. If \times t are the same for both waves
- same state. If ×, t are the same for both waves, then we have so the same the same for both waves.
 I think on a practicals problem sheet during the first week there was a typo, refering to φ₀ as the "phase". That is more properly called the "phase constant". It is one of the four constants that describe a sinusoidal wave: A, k, w and φ₀.

Where to get help

- Your classmates: go on Piazza.com, form a study group, hang out in MP125, etc
- Your two graduate student TAs. Learn their email address, office hours, and office location.
- Me. After class + MP121B office hours are T12, F10, email [Note I am away Friday Jan.23]
- Professor Meyertholen, MP129A office hours are M2, F11-12
- The Physics Drop-In Centre in MP125, back corner MTWR 12-3, F11-2
- Academic Success Centre in Koffler 1st floor, inside the Career Centre

Announcement

- Test 1 is Tuesday Jan. 27th from 6:00-7:30pm.
- Room is based on your Practicals group

							Seren L	Group	Room
Group	Room	1	Gro	oup	Room	1		W2A	EX 300
M2A	EX 20	0	T2	A.	EX 10	0		W2B	EX 310
M2B	EX 200	0	T2	B	EX 10	0		W3A	EX 300
МЗА	EX 200	D	ТЗ	A	EX 10	D		W3B	EX 310
M3B	EX 200	0	ТЗ	в	EX 10	D		W4A	EX 310
								W4B	EX 300
					_				
	[Group	Room			Group	Roon	n	
	F	Group R1A	Room EX 200		F	Group F1A	Room EX 10	<u>n</u>)0	
		Group R1A R1B	Room EX 200 EX 200			Group F1A F1B	Room EX 10 EX 10	n)0)0	
		Group R1A R1B R2A	Room EX 200 EX 200 EX 200			Group F1A F1B F2A	Room EX 10 EX 10 EX 10	n 00 00	
		Group R1A R1B R2A R2B	Room EX 200 EX 200 EX 200 EX 200 EX 200			Group F1A F1B F2A F2B	Room EX 10 EX 10 EX 10 EX 10	n 100 100 100	
		Group R1A R1B R2A R2B R3A	Room EX 200 EX 200 EX 200 EX 200 EX 200 EX 200 EX 200			Group F1A F1B F2A F2B	Room EX 10 EX 10 EX 10 EX 10	n 00 00 00	

Announcement

- Test 1 is Tuesday Jan. 27th from 6:00-7:30pm.
- If you have a conflict with the regular sitting, the alternate sitting will be from 4:30-6:00pm on Tuesday Jan. 27th
 - To register, students should submit the Alternate Sitting Registration Form, available now in the PHY132S Portal course menu.
 - The location will be emailed no later than Jan. 26 to the people who have registered.
 - You have until Jan. 22 at 4:00pm to do it (the form will not be available after).
- There are only two sittings you must attend one or the other!

Review: The Doppler Effect

The frequencies heard by a stationary observer when the sound source is moving at speed v_0 are

$$f_{+} = \frac{f_{0}}{1 - v_{s}/v} \qquad \text{(Doppler effect for an approaching source)}$$

$$f_{-} = \frac{f_{0}}{1 + v_{s}/v} \qquad \text{(Doppler effect for a receding source)}$$

$$(20.39)$$

The frequencies heard by an observer moving at speed v_0 relative to a stationary sound source emitting frequency f_0 are

$$f_{+} = (1 + v_o/v)f_0$$
 (observer approaching a source)
 $f_{-} = (1 - v_o/v)f_0$ (observer receding from a source) (20.40)

Review: The Doppler Effect

25=343 m

- If both the source, and the observer are moving, you have to combine these equations.
- The general equation is:

$$f_{Doppler} = f_0 \frac{(1 - v_o/v)}{(1 + v_s/v)} = speed of$$

$$f_{Doppler} = f_0 \frac{(1 - v_o/v)}{(1 + v_s/v)} = speed of$$
sound

- Here you must use the sign convention that v_s is
 positive if the source is receding and negative if the
 source is approaching.
- Also v_o is **positive** if the observer is **receding** from the source, and negative if the observer is approaching the source.

What is light?

 Light is an electromagnetic wave – and is highly useful in our everyday life!

Electromagnetic Waves

The electric and magnetic fields of an electromagnetic wave are perpendicular to each other and to the direction of motion of the wave.

Electromagnetic Spectrum

- In a vacuum, all electromagnetic waves move at the same speed
- We classify electromagnetic waves according to their frequency (or wavelength)
- · Light is one kind of electromagnetic wave

Electromagnetic Waves CHECK YOUR NEIGHBOUR

If a certain material is "transparent" (ie, not opaque), what does this mean?

- A. Electromagnetic waves of all frequencies can pass straight through it
- B. Electromagnetic waves of all frequencies are reflected from its surface
- C. Electromagnetic waves of all frequencies are absorbed throughout its volume
- D. Electromagnetic waves of a certain frequency can pass straight through it

Transparent Materials

Glass blocks both infrared and ultraviolet, but it is transparent to visible light.

Opaque Materials

- Most things around us are **opaque**—they absorb light without re-emitting it.
- Vibrations given by light to their atoms and molecules are turned into random kinetic energy—into internal energy.
- These materials become slightly warmer.

Opaque Materials

Metals

• Light shining on metal forces free electrons in the metal into vibrations that emit their own light as reflection.

Reflection CHECK YOUR NEIGHBOUR

Which reflects more light, a white piece of paper or a black piece of paper?

- A. Black
- B. White
- C. About the same

Reflection CHECK YOUR NEIGHBOUR

Which reflects more light, a white piece of paper or a mirror?

- A. White Paper
- B. Mirror
- C. About the same

Mirrors

- The surface is *flat* at distance scales near or above the wavelength of light
- It looks "shiny", and you can see images in it.

Diffuse Reflection

White Paper

• The surface is *rough* at distance scales near or above the wavelength of light

• Almost all surfaces reflect in this way!

- A dentist uses a mirror to look at the back of a second molar (A).
- Next, she wishes to look at the back of a lateral incisor (B), which is 90° away.
- By what angle should she rotate her mirror?
 - A. 90°
 - B. 45°
 - C. 180°

Refraction

When light bends in going obliquely from one medium to another, we call this process refraction.

Cause of Refraction

- Bending of light when it passes from one medium to another
- · Caused by change in speed of light

Refraction

Light travels slower in glass than in air, so it minimizes the time it spends in the glass.

•

Speed of light in cladding is *higher* than speed of light in core.

Medical Fibrescopes

No light rays actually pass through or even near the image, so it is "virtual".

Two plane mirrors form a right angle. How many images of the ball can the observer see in the mirrors?

A fish swims below the surface of the water.

- An observer sees the fish at:
- A. a greater depth than it really is.
- B. its true depth.
- C. a smaller depth than it really is.

A fish swims *directly* below the surface of the water. An observer sees the fish at:

- A. a greater depth than it really is.
- B. its true depth.
- C. a smaller depth than it really is.

Before Class 7 on Monday

- Please read Knight Pgs. 670-686: Ch. 23, sections 23.6-23.8
- Don't forget Problem Set 2 due on Sunday night!
- Something to think about: What is the difference between a converging and diverging lens? Which type can be used to focus sunlight onto a piece of

paper and burn a hole?

