

Fun with Charge Conservation!!!

Identical metal spheres are initially charged as shown. Spheres P and Q are touched together and then separated. Then spheres Q and R are touched together and separated. Afterward the charge on sphere R is

- A. -1 nC or less.
- B. -0.5 nC.
- **C**. 0 nC.
- D. +0.5 nC.
- E. +1.0 nC or more.

+ 4 nC

-2 nC

-1 nC

- What is electric current?
- It's something to do with the electrons moving through the metal wires.
- What is voltage? •

Coulomb's Law, and The Permittivity Constant

- We can make many future equations easier to use if we rewrite Coulomb's law in a somewhat more complicated way.
- Let's define a new constant, called the permittivity constant *ϵ*₀:

$$\epsilon_0 = \frac{1}{4\pi K} = 8.85 \times 10^{-12} \,\mathrm{C}^2 /\mathrm{N} \,\mathrm{m}^2$$

• Rewriting Coulomb's law in terms of ϵ_0 gives us:

$$F = \frac{1}{4\pi\epsilon_0} \frac{|q_1||q_2|}{r^2}$$

Charge Polarization

- Charge polarization produces an excess positive charge on the leaves of the electroscope, so they repel each other.
- Because the electroscope has no *net* charge, the electron sea quickly readjusts once the rod is removed.

Although the net charge on the electroscope is still zero, the leaves have excess positive charge and repel each other.

The Electric Dipole

- Even a single atom can become polarized.
- The figure below shows how a neutral atom is polarized by an external charge, forming an electric dipole.

Atom all alone:

In an isolated atom, the electron cloud is centered on the nucleus.

The Electric Dipole

- Even a single atom can become polarized.
- The figure below shows how a neutral atom is polarized by an external charge, forming an electric dipole.

The Electric Dipole

- When an insulator is brought near an external charge, all the individual atoms inside the insulator become polarized.
- The polarization force acting on each atom produces a net polarization force toward the external charge.

Thinking about Electric Force

E. None of these.

Thinking about Electric Force

The direction of the force on charge -q is

-q

- A. Up.
- B. Down.
- C. Left.
- D. Right.
- E. The force on -q is zero.

The Field Model

- The photos show the patterns that iron filings make when sprinkled around a magnet.
- These patterns suggest that space itself around the magnet is filled with magnetic influence.
- This is called the magnetic field.

• The concept of such a "field" was first introduced by Michael Faraday in 1821.

The Field Model

- A *field* is a function that $\vec{F}_{A \text{ on } B}$ assigns a vector to every point in space.
- The alteration of space around a mass is called the gravitational field.
- Similarly, the space around a charge is altered to create the electric field.

In the Newtonian view, A exerts a force directly on B.

In Faraday's view, A alters the space around it. (The wavy lines are poetic license. We don't know what the alteration looks like.)

B

Particle B then responds to the altered space. The altered space is the agent that exerts the force on B.

The Electric Field

A charged particle with charge q at a point in space where the electric field is \vec{E} experiences an electric force:

$$\vec{F}_{\mathrm{on}\,q} = q\vec{E}$$

- If q is positive, the force on the particle is in the direction of \vec{E} .
- The force on a negative charge is *opposite* the direction of \vec{E} .

The units of the electric field are N/C. The magnitude E of the electric field is called the **electric field strength**.

Field location	Field strength (N/C)
Inside a current- carrying wire	$10^{-3} - 10^{-1}$
Near the earth's surface	$10^2 - 10^4$
Near objects charged by rubbing	$10^3 - 10^6$
Electric breakdown in air, causing a spark	3×10^{6}
Inside an atom	10^{11}

 TABLE 26.1
 Typical electric field strengths

The Electric Force

Example. A 0.10 g honeybee has an electric charge. There is a natural electric field near the earth's surface of 100 N/C, downward. What electric charge would the bee have to have to hang suspended in the air, without even flapping her wings?

The Electric Field of a Point Charge

The electric field at a distance r away from a point charge, q, is given by:

$$\vec{E} = rac{\vec{F}_{\mathrm{on}\,q'}}{q'} = \left(rac{1}{4\pi\epsilon_0} rac{q}{r^2}, \text{ away from } q\right)$$

The Electric Field of a Point Charge

$$+$$
 Point charge q

The Electric Field of a Point Charge

- If we calculate the field at a sufficient number of points in space, we can draw a field diagram.
- Notice that the field vectors all point straight away from charge q.
- Also notice how quickly the arrows decrease in length due to the inverse-square dependence on *r*.

At which point is the electric field stronger?

- A. Point A.
- B. Point B.
- C. Not enough information to tell.

The Electric Field of a Point Charge

 Using unit vector notation, the electric field at a distance *r* from a point charge *q* is:

$$\vec{E} = \frac{1}{4\pi\epsilon_0} \frac{q}{r^2} \hat{r}$$

- A negative sign in front of a vector simply reverses its direction.
- The figure shows the electric field of a negative point charge.

Which is the electric field at the dot?

E. None of these.

The Electric Field of Multiple Point Charges

- Suppose the source of an electric field is a group of point charges q₁, q₂, ...
- The net electric field \vec{E}_{net} at each point in space is a superposition of the electric fields due to each individual charge:

$$(E_{\text{net}})_x = (E_1)_x + (E_2)_x + \dots = \sum (E_i)_x$$

$$(E_{\text{net}})_y = (E_1)_y + (E_2)_y + \dots = \sum (E_i)_y$$

$$(E_{\text{net}})_z = (E_1)_z + (E_2)_z + \dots = \sum (E_i)_z$$

Electric Dipoles

A water molecule is a *permanent* dipole because the negative electrons spend more time with the oxygen atom.

- Two equal but opposite charges separated by a small distance for an *electric dipole.*
- The figure shows two examples.

This dipole is *induced*, or stretched, by the electric field acting on the + and - charges.

 $\vec{p} = (qs, \text{ from the negative to the positive charge})$

• The SI units of the dipole moment are C m.

The Dipole Electric Field at Two Points

The Electric Field of a Dipole

The electric field at a point on the axis of a dipole is:

 $\vec{E}_{\text{dipole}} \approx \frac{1}{4\pi\epsilon_0} \frac{2\vec{p}}{r^3}$ (on the axis of an electric dipole)

where r is the distance measured from the *center* of the dipole.

 The electric field in the plane that bisects and is perpendicular to the dipole is

$$\vec{E}_{\text{dipole}} \approx -\frac{1}{4\pi\epsilon_0} \frac{\vec{p}}{r^3}$$
 (bisecting plane)

 This field is opposite to the dipole direction, and it is only half the strength of the on-axis field at the same distance.

The Electric Field of a Dipole

This figure represents the electric field of a dipole as a fieldvector diagram.

The Electric Field of a Dipole

This figure represents the electric field of a dipole using electric field lines.

The Electric Field of Two Equal Positive Charges

This figure represents the electric field of two same-sign charges using electric field lines.

Two protons, A and B, are in an electric field. Which proton has the larger acceleration?

- A. Proton A.
- B. Proton B.
- C. Both have the same acceleration.

Before Class 10 on Wednesday

- Please read over the rest of Chapter 26, or at least watch the pre-class video.
- Please complete the pre-class quiz due on Wednesday morning.
- Something to think about or google: Does lightning go up or down? If the ground is neutral and the cloud-cover is positive, can lightning be the electrons jumping up to the clouds?