

- The Principle of Superposition
- Standing Waves
- The Guitar: Stringed Instruments
- The Trumpet: Wind Instruments

Doppler Effect, Section 20.7

f

When the observer is stationary, and the source is moving at speed v_s directly toward or away from the observer:

$$f_{+} = \frac{f_{0}}{1 - v_{s} / v} \qquad f_{-} = \frac{f_{0}}{1 + v_{s} / v}$$

 When the source is stationary, and the observer is moving at speed v_o directly toward or away from the source:

$$f_{+} = (1 + v_o / v) f_0$$
 $f_{-} = (1 - v_o / v) f_0$

Which statement is true?

Adrienne is standing in the middle of the road, as a police car approaches her at a constant speed, v. The siren on the police car emits a "rest frequency" of f_0 .

- A. The frequency she hears rises steadily as the police car gets closer and closer.
- B. The frequency she hears steadily decreases as the police car gets closer and closer.

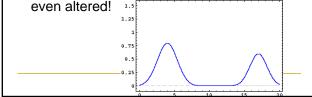
C. The frequency she hears does not change as the police car gets closer.

Which statement is true? Adrienne is standing still as a police car approaches her at a constant speed, v. Suzanne is in her cadillac moving at the same constant speed, v, toward an identical police car which is standing
still. Both hear a siren. Actual Answer!
A. The frequency Suzanne hears is lower and 20.39!
than the frequency Adrienne hears.
B. The frequency Suzanne hears is
higher than the frequency Adrienne
hears(Almost correct)
C. The frequencies that Suzanne and (Amost correct)
Adrienne hear are exactly the same

Message from Dr. Savaria....

- If you have a conflict at 6:00-7:30 PM on Dec.4 and wish to write Test 2 at an alternate time:
 - Send an email to <u>phy138y@physics.utoronto.ca</u> (or reply to seeley) confirming that you wish to reregister, if you registered for the alternate sitting of Test 1.

or


- Visit April Seeley in MP129 or MP302 to register for the first time you will write in an alternate time.
- The deadline for confirming / registering is Nov.26 by 5:00PM.

Reading Assignment

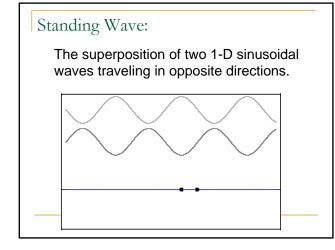
- This week's reading assignment from the text by Knight is: Chapter 21, Sections 21.1-21.8
- Suggested Chapter 21 Exercises and Problems for Practice: 7, 19, 25, 31, 49, 65, 71, 83 (skip part b – just use result)
- Waves Quarter Written Team Problem Set is due Friday by 5:00 PM in T.A. drop box. – You must work in the teams assigned to you in tutorial.

Chapter 21: Principle of Superposition

- If two or more waves combine at a given point, the resulting disturbance is the *sum* of the disturbances of the individual waves.
- Two traveling waves can pass through each other without being destroyed or

Some Results of Superposition:

21.2-21.4: Two waves, same wavelength and frequency, opposite direction:


Standing Wave

21.5-21.7: Two waves, same wavelength and frequency, similar direction, different phase:

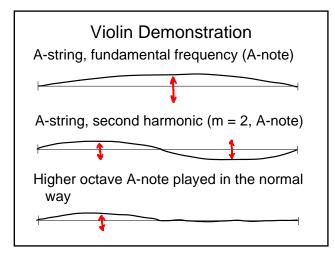
Interference

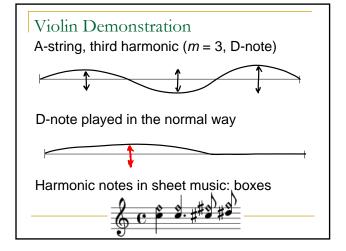
21.8: Two waves, same direction, slightly different frequency and wavelength:

Beats!

Standing Waves

- Are a form of "resonance"
- There are multiple resonant frequencies called harmonics
- The boundary conditions and speed of waves determine which frequencies are allowed.
- The ends of the resonant cavity have forced nodes or antinodes
- With a wave on a string, it is possible to force an intermediate node

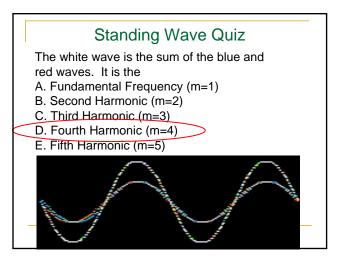


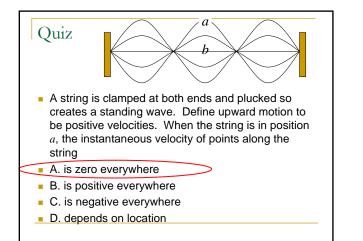

Harmonic frequencies on a violin

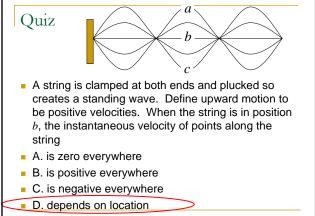
Transverse standing wave on a string clamped at both ends: there are nodes in displacement at both ends.

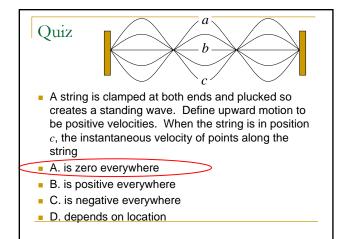
$$f_m = m \frac{v}{2L}$$
 (*m* = 1,2,3,...)

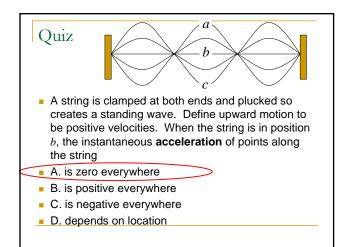
A violin and all other stringed instruments almost always operate in the m = 1 or fundamental frequency.


Harmonic frequencies in air column


Standing sound wave in a tube open at both ends: there are nodes in pressure both ends.


$$f_m = m \frac{v}{2L}$$
 (*m* = 1,2,3,...)


Standing sound wave in a tube closed at one end: there is a node in pressure at the open end, and an anti-node at the closed end.


$$f_m = m \frac{v}{4L}$$
 (*m* = 1,3,5,...)

